发布时间:2013-01-8 阅读量:1833 来源: 我爱方案网 作者:
.jpg)
图一:倍频器电路图
倍频器的基本原理
倍频器按其工作原理又可分为两大类:一种是非 线性电阻倍频。这类倍频器是利用双结型晶体管、场 效应晶体管或二极管的非线性电阻效应把大幅度正弦 倍频器的原理波变成电流脉冲,再用选频回路将所需要的谐波选出,以完成倍频作用。
另一种非线性电抗倍频,亦称为“参量倍频”。其一是利用PN 结或金属一半导体结电容的非线性变化得到输入信号的谐波,经滤波器选出需要的频率.变容二极管倍频器、阶跃二极管倍频器以及利用集电极非线性效应做成的三极管倍频器都是非线性电容构成的倍频器;其二是利用非线性电感构成的倍频器。例如利用雪崩二极管雪崩渡越效应引起的非线性电感实现的倍频。
目前,在频率较低、倍频次数不是很高的场合,人们常采用晶体管有源倍频来实现 而在频率较高时往往采用变容二极管或是阶跃恢复二极管等无源电路。随着截止 频率很高的各种场效应管的出现,人们对利用场效应管的非线性来实现次数较低的倍频电路表现出极大的兴趣。
变容二极管倍频器
负偏置的变容二极管D接于输入和输出回路之间。由L1C1构成的高Q滤波器只容频率为f1的输入信号在左边回路产生电流i。由于变容二极管的非线性特性,二极管的端电压含有基频f1和2f1,…,nf1等谐波频率。在输出端由于高Q带通滤波器的作用,因而只有频率为nf1的成分能够通过右边回路,并向负载输出有用的谐波功率。变容二极管倍频器有时又称参量倍频器,它的倍频效率与倍频次数n成反比,为使输出足够大,一般以n<10为准。
.jpg)
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。