微型直流电机介绍

发布时间:2013-01-10 阅读量:1737 来源: 我爱方案网 作者:

微型直流电机介绍


是指输出或输入为直流电能的旋转电机,称为微型直流电机。

微型直流电机发展历程

直流电动机是最早发明能将电能转换为机械能的设备,它可追溯到法拉第所发明的碟型电动机。到了1880年已成为主要的电能到机械能转换装置,但之后由于交流电的使用日趋普及,而发明了感应电动机与同步电动机,直流电动机的重要性亦随之降低。直到约1960年,由于SCR的发明,磁铁材料、碳刷、绝缘材料的改良,以及变速控制的需求日益增加,再加上工业自动化的发展,直流电动机驱动系统再次得到了发展的契机,到了1980年直流伺服驱动系统成为自动化工业与精密加工的关键技术。

微型直流电动机的结构特点

微型直流电动机分永磁式和电磁式两种。永磁式直流电机的结构由磁极(定子)、电枢(转子)、换向器、电刷等组成。永磁体做成的磁极产生静止的磁场;电枢是电动机的转动部分,漆包线绕在带槽的铁心上做成电枢绕组;换向器又称整流子,它是直流电机的主要特征,由互相绝缘的弧形铜片(换向片)在胶木件上压铸制成;电刷常用银石墨或铜片制成,它是将电流引到换向器,进入电枢的部件,各种电机的电刷结构有所不同。电机一般采用低噪声的含油轴承。

与永磁式电机比较,除磁极有较大区别外,其它部分基本相同。它的磁极由铁心和激磁绕组两部分组成,铁心固定在机壳上成为凸极,激磁线圈绕在凸极上。换向器的结构与永磁式电机相似,但换向片数比永磁电机要多。

微型直流电动机实例分析

51单片机的低电平,是通过MOSFET接地,故下拉能力极强。如图一,四个三极管都采用PNP型,控制导通是51单片机的引脚输出低电平,解决了上拉能力弱的问题,可以使电动机运行。但此电路的Q1和Q2需要分别控制,所需控制引脚较电路一多一个。如果想减少控制引脚数则可以加反相器。

分立驱动
图一:分立驱动

占用引脚数与电路一相同,图中标有各点实测电压值。在电路二和电路三的试验中,有一个共同的问题:电动机转速不高。这是由于Q2和Q4的发射极高出基极一个0.7V,而基极最低为0V, 实际由于51单片机引脚内部有MOSFET管压降,所以Q2和Q4的发射极不会低于1V,使电动机M两端的有效电压范围减小。

分立驱动
图二:分立驱动
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。