风力发电机基础知识介绍

发布时间:2013-01-25 阅读量:4391 来源: 我爱方案网 作者:

风力发电机基础知识介绍


什么是风力发电机

风力发垂直轴风力发电机、风力发电、风光互补系统电机是将风能转换为机械能,机械能转换为电能的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。 许多世纪以来,风力发电机同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。

风力发电机
图一:风力发电机

风力发电机内部结构

双馈式异步风力发电机结构与普通异步发电机类似,转子绕组为绕线式,通入交流电做为励磁,当转子转速高于同步转速时,定子绕组感应发电,当转子转速继续升高,高出转差转速时,转子绕组也会向电网馈电,即为双馈之名来源。

永磁同步发电机结构与普通同步发电机类似,转子无绕组,安装有永磁体形成固定的励磁磁场,因此转子无集电环及碳刷,整体结构比较紧凑,由于发电机为直驱式,所以其转速较低,永磁体一般为几十个。

风力发电机内部结构

图二:上为直驱永磁同步发电机,下为双馈异步发电机

风力发电机工作原理

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。

根据风力发电机旋转轴的区别,风力发电机可以分为水平轴风力发电机和垂直轴风力发电机。水平轴风力发电机水平轴风力发电机。水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。

永磁风力发电机

永磁电机一般是直驱机组,所谓的直驱就是叶轮直接与发电机的转子连接,带动发电机转动,与定子产生切割磁感线运动,产生电力,永磁风机的叶轮转速一般是变动的,所以发电机发出的电流和电压是不稳定的,这时候需要在发电机的输出侧加一个全功率的变流器,将发电机发出的交流电变为直流,在由变流器逆变成690v的交流电送到风机外的箱变中,由箱变升压后送到风电场的升压站,与传统的风机结构有所区别,传统风机的叶轮一般连接的是主轴,主轴连接齿轮箱的低速端,齿轮箱的高速端通过联轴器连接发电机,因为有齿轮箱,发电机的转速是额定的,输出电压和频率也是恒定的,这是他们的主要区别。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。