阻容吸收器及其现状

发布时间:2013-02-27 阅读量:1117 来源: 我爱方案网 作者:

电路保护,是一个永航的话题。保险丝、保护开关、阻容吸收器等都是重要的保护器件。保险丝、保护开关等我们都有了解过了,那不知道大家对阻容吸收器的情况又是否了解呢?以下,小编将重点和大家分享阻容吸收器的相关情况。
 阻容吸收器
阻容吸收器
阻容吸收器的概述
在美日等发达国家,真空开关与阻容吸收器的配套,是比较常见的使用方式。由于我国中压(3~66Kv)电网的一些特殊性,过去进口的阻容吸收装置和采用国外标准生产的国产阻容吸收器,均无法适应我国的实际情况,经常出现原因不明的损坏事故。这导致了该产品在国内的发展速度远远落后于真空开关。
过去阻容过电压吸收器所用的电容器均不是“保护电容器”,实际就是过电压保护器上改装一下,有的用多个甚至上百个低压电容器串联后当作高压电容器用,有的把氧化锌电阻阀片和电容器并联,有的带串联间隙,真是五花八门,不一而足,但无论用什么办法,其电容器极间的工频耐受电压只有额定电压的2.15倍,而且耐压时间只有10S。这远远达不到国标GB311.1-1997的要求。例如10KV的电容器,其极间工频耐受电压只有21.5KV/10S,和GB311.1-1997标准要求的42KV/1min相差太远。而且阻容过电压吸收器是装在高压开关柜内,其绝缘水平和开关柜内所有电气元件的绝缘水平不相配合,因此这些产品在使用说明书中写到:“因为试验标准不同,作耐压试验时,阻容吸收器要单独进行。绝不能和开关柜以及其它设备一起试验。”违背了“GB311.1-1997高压输变电设备的绝缘配合”的原则。同时也和其被保护的设备(变压器和电抗器的绝缘水平35KV/1min,这里仅以10kv产品为例,其他电压等级的产品同样如此)不相配合,也就是说,这类阻容吸收器根本不能保护别的设备,(前述的带串联间隙和阀片、并联阀片等办法,只是为了保护自己)因为它自己的耐受电压最低,因此,在有操作过电压时,肯定损坏的是这些阻容吸收器,所以是保护电气设备的装置。
 阻容吸收器
阻容吸收器
阻容吸收器的现状
但进入2002年以后,随着中压系统的阻容保护理论上的完善,找到了出现问题的关键因素。目前国内电网用阻容吸收器[1],采用正确配合原则生产的,均彻底摆脱了事故的困扰,安全性大大提高,使该产品焕发了强大的生命力。目前阻容吸收器合理的电容量与电阻值配比为7.2KV、12KV是0.1uF/100Ω,40.5KV是0.05uF/100Ω。
 
阻容吸收器的定义
对真空开关开断产生的操作过电压,专用的保护设备是阻容吸收器(又称RC保护器)。一般型号都以ZR开头。它是将高压电容器和专用无感线性电阻串联后接入电网的一种吸收过电压的有效设备。
 
阻容吸收器与过电压保护的区别
1、真正意义上的阻容吸收器[1]是把高压电容器和专用无感线性电阻串联后接入电网的;过电压保护器是由氧化锌电阻片做主要元件或氧化锌电阻片与放电间隙串联。
2、阻容吸收器因为并联电容的原因具有一定抑制谐振和消除谐波的功能。过电压保护器不具有此功能 。
 阻容吸收器
阻容吸收器
阻容吸收器的使用须知
阻容吸收器接于断路器出线的电流互感器下端及被保护的电器设备一侧与地之间,越靠近被保护的设备,效果越佳。具体接线详见接线原理图。建议如果前一级未装阻容过电压吸收器时,断路器的进线侧亦应加装阻容吸收器。阻容吸收器保护的电动机容量为100~10000KW,保护变压器的容量为100~45000KVA,保护电容器的容量为1000~10000Kvar。
 
阻容吸收器的故障判断方法
阻容吸收器在投入运行前用精度较高的电容电桥测量阻容吸收器电容器部分的电容值及tanδ值。在做预防性试验时,应该用同一台电桥测量电容值和tanδ值,并与前一次测量值比较,看有无变化。如果40.5KV产品电容量增大2.5%,7.2KV和12KV的电容量增大5%以上,说明电容器内部有故障,应及时更换。测量的tanδ值有明显增大时,亦应更换。有条件时,亦可做耐压试验,可采用工频耐压或直流耐压中的任何一种,其耐压值与验收试验相同,试验时不出现闪络或击穿,便继续运行,否则必须更换。
 
 
关于“阻容吸收器”的相关介绍就先到这里了,充分了解阻容吸收器有利于更好地发挥阻容吸收器的作用,也可以更 充分利用阻容吸收器。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。