毫米波工作原理

发布时间:2013-03-7 阅读量:5014 来源: 我爱方案网 作者:

        毫米波是介于微波与光波之间的电磁波,通常毫米波频段是指30~300GHz,相应波长为1~10mm 。目前绝大多数的应用研究集中在几个“窗口”频率,包括35、45、94、140、220GHz和三个吸收峰(60、120、200GHz频率上)。毫米波主要应用在结构小、重量轻、分辨力高、作用距离近和具有良好多普勒处理特性的场合。
 


毫米波概念

        毫米波 (millimeter wave ):波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。

 

毫米波特点

        毫米波与较低频段的微波相比,

1、优点是:

①可利用的频谱范围宽,信息容量大。

②易实现窄波束和高增益的天线,因而分辨率高,抗干扰性好。

③穿透等离子体的能力强。

毫米波雷达

毫米波雷达


④多普勒频移大,测速灵敏度高。

2、缺点是:

①大气中传播衰减严重。

②器件加工精度要求高。

③与光波相比,它们利用大气窗口(毫米波与亚毫米波在大气中传播时,由于气体分子谐振吸收所致的某些衰减为极小值的频率)传播时的衰减小,受自然光和热辐射源影响小。
 



毫米波的应用

        毫米波在通信、雷达、制导、遥感技术、射电天文学、临床医学和波谱学方面都有重大的意义。利用大气窗口的毫米波频率可实现大容量的卫星-地面通信或地面中继通信。利用毫米波天线的窄波束和低旁瓣性能可实现低仰角精密跟踪雷达和成像雷达。

毫米波的医学应用

毫米波的医学应用


        在远程导弹或航天器重返大气层时,需采用能顺利穿透等离子体的毫米波实现通信和制导。高分辨率的毫米波辐射计适用于气象参数的遥感。用毫米波和亚毫米波的射电天文望远镜探测宇宙空间的辐射波谱可以推断星际物质的成分。


毫米波检测原理

     
检测原理视频在附件中,需要的读者可以下载浏览!





 

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。