多用智能温度测量仪的设计

发布时间:2017-06-13 阅读量:942 来源: 我爱方案网 作者:

本设计实现了一种多用智能温度测量仪。采用传感器为DALLAS 公司的单总线数字式温度传感器DS18B20 及单片机为8051,通过单片机对传感器采集到的数字信号进行计算处理,实现温度的测量、温度数值的数字显示及高温报警等功能。


随着现代科技的发展,温度测量在各个领域应用越来越广泛,同时温度测量技术也被人们所异常关注。多功能温度测量仪就是一个典型的例子,运用单片机技术,向数字化,智能化方向发展。在此介绍一种多功能温度测量仪,既可以测量环境温度、又能测量人体温度,达到快响应、数字显示温度值,并且具有高温报警的目的。


本设计实现了一种多用智能温度测量仪。采用传感器为DALLAS 公司的单总线数字式温度传感器DS18B20 及单片机为8051,通过单片机对传感器采集到的数字信号进行计算处理,实现温度的测量、温度数值的数字显示及高温报警等功能。提供了完整的硬件电路图和软件流程图,并详细介绍了软件设计要点及创新点。经实物测试实验,该测量仪既能测量环境温度,又可测量人体温度,具备使用方便、响应快、结果显示直观的特点。

1 硬件电路设计

1.1 温度传感器

采用DA LLAS 公司的温度传感器DS18B20 作为温度采集器件,DS18B20 的内部结构主要由64 位ROM、温度灵敏元件、内部存储器和配置寄存器4 部分组成,如图1 所示。

(1) 64 位ROM。它的内容是64 位序列号,它可以被看作是该DS18B20 的地址序列码,其作用是使每个DS18B20 都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目的。

(2) 温度灵敏元件。它完成对温度的测量,测量后的结果存储在2 个8 b 的温度寄存器中。

(3) 内部存储器。内部存储器包括一个高速暂存RAM 和一个非易失性的可电擦除的E2 PROM,后者存放高温度和低温度触发器TH、TL 以及配置寄存器。

DS18B20 的内部结构

图1:DS18B20 的内部结构

DS18B20 具有以下特点:

(1) 独特的单线接口方式,与单片机连接时仅需要一条口线;
(2) 测温范围为- 55~ + 125℃,在- 10~ + 85℃范围内精度为±0. 5 ℃;
(3) 通过编程可实现9~ 12 位的数字读数方式;
(4) 用户可自设定非易失性的报警上下限值;
(5) 外围电路简单,使用时不需要外围元件,可用数据总线供电,电压范围为3. 0 ~ 5. 5 V 无需备用电源;
(6) DS18B20 有TO 92、SOIC 及CSP 封装,本测量仪选用DS18B20 的外形及引脚排列如图2 所示,其中VDD 为外接供电电源输入端,GND 为公共地,DQ为数字信号输出端。

DS18B20 的外形及引脚排列

图2:DS18B20 的外形及引脚排列

基于以上特点,采用DS18B2 使得硬件消耗更少,系统设计更灵活、方便,价格更便宜,体积更小。

1.2 硬件电路设计

系统硬件电路如3 所示。

系统硬件电路图

图3:系统硬件电路图

包括信号采集、系统控制、数字显示、高温报警四个部分。传感器DS18B20 为信号采集器件所采集到的温度信号,通过内部处理由传感器的DQ 端送到单片机P3. 2 端口,经单片机的计算处理后,由P0 口和P1 口分别作为4 位共阳数码管的段控信号和位控信号,共同完成对所测温度值的数字显示,最高位是符号显示,如显示负号“-”时,表示当前温度是负温度,否则为正温度;由P2. 0 端口控制蜂鸣器,当测量的温度超过“预设报警温度”时,发出提示音报警; P2. 1~ P2. 3 端口来控制黄、绿、红3 个发光二极管分别表示低温、正常、高温三种温度状态。石英晶体JT 和电容C2 ,C3 共同组成晶振电路; 电容C1 、电阻R 13、S B 共同构成复位电路; 其中电阻R13为下拉电阻,SB 为手动复位按钮。

2 软件设计

为了便于子程序的调用和维护系统,程序遵循标准化、模块化的原则,主要完成包括读DS18B20 温度数据、数据的整理转换、温度显示、报警等模块的设计。由于程序任务相对较少,结构相对简单,本系统由主程序和多个子程序组成,采用顺序性结构主程序流程。

2.1 软件设计要点

由于DS18B20 采用的是单线总线协议方式,即在一条数据线上实现数据的双向传输,而单片机硬件上不支持单总线协议,因此必须采用软件方法来模拟单总线的协议是序来完成对DS18B20 芯片的访问。

由于DS18B20 是在一根I/ O 线上读写数据,因此对读写的数据位有严格的时序要求,它有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序: 初始化时序、读时序、写时序。所有时序都是将单片机作为主设备,DS18B20 作为从设备,而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求DS18B20 回送数据,在进行写命令后,主机需启动读时序完成数据接收。

2.2 软件设计
创新点在温度显示模块引入“显存”的概念,用“显存”直接映射到显示子程序,便于程序的移植,更便于以后的组建多点的温度检测网络,或嵌于其他监测系统。

程序片段如下:

程序片段


2.3 主程序流程图

主程序流程如图4 所示。

主程序流程图

图4:主程序流程图

3 实物运行与测试

测试方法: 用水银温度计和温度测量仪同时对同一空气环境、水、人体进行测量,详细记录每次测量数据,并进行数据对比。测试结果如表1 所示,结果显示误差仅± 0. 2 ℃。

表1:实物运行测试对照表

实物运行测试对照表

4 结 语

运用温度传感器DS18B20 和单片机8051 等设计并制作的温度测量仪,用较低的成本实现了温度的测量与显示。该测量仪采用的元器件价格低廉又容易获得,具有硬件结构简单、响应快、显示直观等优点,并且元器件DS18B20 单总线结构具有很强的扩展性. 还可以组建多点的温度检测网络该方案设计温度监测系统,应用前景广泛。


以上就是小编为大家介绍的有关“多用智能温度测量仪的设计”的相关知识,有想了解更多的朋友可以看以下相关文章。希望通过小编的介绍能给大家带来帮助!

多用智能温度测量仪的设计”的相关文章:

智能温度测量仪的研究与设计-原文链接:
http://www.52solution.com/knowledge/5519.html

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。