热喷涂技术和喷焊技术及聚氨酯喷涂的区分

发布时间:2018-09-18 阅读量:825 来源: 发布人:

热喷涂技术是利用热源将喷涂材料加热至熔化或半熔化状态,并以一定的速度喷射沉积到经过预处理的基体表面形成涂层的方法。热喷涂包括火焰喷涂、电弧喷涂和等离子体喷涂,其主要优点是效率高,涂层厚度均匀且与基材结合牢固,不足之处是粉末利用率低,需要专门的设备和技术。热喷涂技术与喷焊技术主要有以下区别:


热喷涂技术和喷焊技术及聚氨酯喷涂的区分


工件受热情况不同。 喷涂无重熔过程,工件表面温度始终可控制在250℃以下,一般不会产生变形和改变工件的原始组织。这对喷修工件形状复杂、薄壁、长袖及一些重要机件是有利的。喷熔要使粉层熔化,重熔烧结工件温度可达900℃以上,容易引起应力和变形,多数工件会发生退火及不完全退火。

与基材表面结合状态不同。 喷涂与基材表面的结合,以机械咬合为主,也有微小的显微焊合,结合强度不高;一般为20MPa~65MPa。喷焊是通过粉层熔化与基材表面形成冶金结合,结合强度一般可达343MPa~441MPa。喷熔所用的粉末必须是自熔性的合金粉末,而喷涂所使用粉末不受限制。喷熔层均匀致密,一般认为无孔隙而喷涂层具有一定孔隙。

承受载荷性能不同。 喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触配合。喷熔层结合强度大,可承受冲击载荷,可用于线接触等场合,能承受较高的接触应力。

如何选择喷涂与喷熔?
当工件承受负载大,尤其是承受冲击负荷,要求涂层有很高的结合强度或工件在腐蚀介质中使用,或要求涂层致密的情况下,以采用喷熔为宜。当工件尺寸精度要求很高和不允许变形或不允许改变它原有的淬火组织,而且这些工件不受冲击负荷或只承受轻微的冲击负荷,对结合强度要求不是很高时,宜采用喷涂方法。

聚氨酯喷涂优点首先是对于各种形状的基材,不论是平面、立面还是顶面,不论是圆形、球形还是其他不规则形状的复杂物体,都可以直接实施喷涂发泡加工,不需昂贵的模具制造费用;喷涂发泡成型的泡沫保温层的形状与基材物体形状一致;无接缝,绝热效果好;泡沫层外部有一层致密的保护皮层,能较好地保护内部芯材,同时还容易进行外表面的涂料涂刷和进一步修装;


热喷涂技术和喷焊技术及聚氨酯喷涂的区分


其次生产效率高,尤其适用于大面积、异形物体的绝热处理,成型速度快,生产效率高。粘结能力强,能在混凝土、砖石、木材、钢材、沥青、橡胶等表面粘结牢固。导热系数可达到0.017-0.022W/m.k,低于岩棉、玻璃棉、聚苯板、挤塑板等建筑保温隔热材料,憎水率95%以上的憎水性能。密封性能好,无空腔、无接缝,将建筑外围护结构完全包裹,有效的阻止了风和潮气通过缝隙流动进出建筑物,实现完全密封。

再者尺寸稳定,尺寸稳定性小于1%,具有一定的弹性变形能力,延伸率大于5%。性能恒定:聚氨酯是惰性材料,与酸和碱都不发生反应,且不是虫类以及啮齿类动物的食物源,可保持材料性质及保温性能恒定。抗风性能:抗压强度>300Kpa,抗拉强度>400Kpa,有很强的抗风揭性,且其发泡可钻入墙体缝隙,增加其抗剪性能。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。