继电器的触点分析和继电器测试方法

发布时间:2018-12-6 阅读量:1156 来源: 我爱方案网 作者: sunny编辑

继电器是一种根据外界输入的电信号,来控制电路中电流的通与断的电器。可以说它就是一个“开关”,而控制电路中电流依靠的就是继电器触点的“开”和“闭”。继电器触点的工作过程有:断开过程、断开状态、闭合过程、闭合状态,对其工作的要求就是能可靠的合、断。而触点能否可靠工作,对其影响最大的是触点的接触电阻。再好的触点也不可能做到没有接触电阻,因此触点的接触电阻是客观存在的。


继电器的触点分析和继电器测试方法


继电器触点接触电阻的存在,当电流通过闭合的触点时,由于继电器触点接触电阻大就会消耗一定的功率(即I2Rj),这将使得触点的温度升高,如果电流较大,触点温度的升高,将会使触点材料发生软化、变形,导致接触电阻更大,严重时甚至会产生熔焊故障,使闭合的触点无法断开。

接触电阻的另一种表现形式是“膜电阻”,由于继电器的触点长期暴露在空气中,总有灰尘、水汽、化学气体产生的化合物,都会黏附在触点上形成一层很薄的薄膜,这就是所谓的“膜电阻”;这样触点的导电性就很差了,严重时甚至不导电。这就是有时在使用现场见到的,某对继电器触点表面看上去虽然已闭合接触了,但它所控制的电路就是不通,或者是忽通忽断、忽好忽坏,既影响了所控电路的正常工作,还使查找故障点极困难。

影响继电器触点接触电阻的因素有:触点压力的大小,触点材料的选择及使用,触点结构的形式,触点的制造工艺,触点使用环境及日常维护程度等。对继电器用户而言,除正确选型外,还要保证继电器的使用环境符合要求。使继电器尽量避开水汽、灰尘、有害气体的侵蚀,要采取措施来减少触点受污染,以保证接触电阻的稳定,从而提高触点的动作可靠性。

测试方法

测线圈电阻:可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。继电器线圈的阻值和它的工作电压及工作电流有非常密切的关系,通过线圈的阻值可以计算出它的使用电压及工作电流。

测触点电阻:用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。

测量吸合电压和吸合电流:找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。测量释放电压和释放电流:也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压)时则不能正常使用了,这样会对电路的稳定性造成威胁使工作不可靠。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。