贴片非屏蔽及片屏蔽电感与功率电感的应用

发布时间:2019-01-7 阅读量:698 来源: 发布人:

贴片屏蔽电感是为了保护导线,回路和线圈免受外界磁场的影响,以及削弱电路产生的电磁场对其他元件产生的干扰作用,通常采用磁屏蔽或电磁屏蔽方法。贴片电感又称为功率电感,大电流电感和表面贴装高功率电感,具有小型化,高品质,高能量储存和低电阻等特性。具有平底表面适合表面贴装,优异的端面强度良好之焊锡性。具有较高Q值,低阻抗之特点,低漏磁,低直电阻,耐大电流之特点。可提供编带包装,便于自动化装配。


贴片非屏蔽及片屏蔽电感与功率电感的应用


贴片屏蔽电感和贴片非屏蔽电感其实就是一个为开磁路,一个为闭磁路,两侧区别是:磁路即磁力线总是闭合的。所谓闭磁路是指的是整个闭合磁路都由磁性材料组成的,环形磁芯就是典型的闭磁路,开磁路指的是磁路中有明显的空气间隙,简称气隙,如U型永磁体。两者区别主要是,闭磁路磁阻很小,但是非线性可能比较明显,开磁路磁阻比较大,但是线性比较好。


贴片非屏蔽及片屏蔽电感与功率电感的应用


在电路中主要起滤波和振荡作用。一般电子线路中的电感是空心线圈,或带有磁芯的线圈,只能通过较小的电流,承受较低的电压;而功率电感也有空心线圈的,也有带磁芯的,主要特点是用粗导线绕制,可承受数十安,数百,数千,甚至于数万安。表面贴装高功率电感,具有小型化,高品质,高能量储存和低阻值特性,有高频,高Q值,高可靠性,抗电磁干扰,独有的磁屏蔽结构。


从结构上来说,功率电感和叠层扼流电感需要优化电极结构以便产品内部磁场更加均匀,提高产品的磁饱和特性,即提高使电感量下降一定幅度时加载的电流。从产品应用上看,普通铁氧体电感一般用于几十MHz以下信号线的谐振滤波,叠层扼流电感一般用于电源线路的扼流及数字模拟区之间的隔离,叠层功率电感则一般用于DC-DC回路,起储能、减小纹波电流的作用。从电流上来说的话,功率电感的额定电流可以达到1A左右,叠层扼流电感额定电流一般为几十至几百毫安,普通铁氧体电感的额定电流一般低于几十毫安。功率电感是一种储能元件,用在LC振荡电路、中低频的滤波电路,DC-DC能量转换等等,其应用频率范围很少超过50MHz。从阻抗频率曲线图可知,工作频率低于谐振频率时,电感器件表现出电感性,阻抗随着频率的升高而增大,当工作频率高于谐振频率时,电感器件表现出电容性,阻抗随着频率的升高而减小。

在为电源滤波选用电感时应选择谐振频率点高于工作频率的电感,同时需要注意以下几点。电感与电容组成低通滤波器时,电感值是一个很关键的参数。电感器件资料标称的电感值,是工作频率低于谐振频率点的值,如果工作频率高于谐振频率,则电感值将会随着工作频率的升高而急剧减小,逐步呈现电容性。电感用于电源滤波时,需要考虑由于其直流电阻而引起的压降。用于电源滤波时,电感的工作电流必须小于额定电流。如果工作电流大于额定电流,电感未必会损坏,但是电感值可能低于标称值。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。