印刷电路板的种类及主板上供电原理

发布时间:2019-01-8 阅读量:766 来源: 发布人:

单面板是在厚度为0.2—5mm的绝缘基板上,只有一个表面敷有铜箔,通过印制和腐蚀的方法在基板上形成印制电路。单面板制造简单,装配方便,适用于一放电路要求,如收音机、电视机等;不适用于要求高组装密度或复杂电路的场合。双面板是在厚度为0.2—5mm的绝缘基板两面均印制电路。它适用于一般要求的电子产品,如电子计算机、电子仪器和仪表等。由于双面板印制电路的布线密度较单面板高,所以能减小设备的体积。


印刷电路板的种类及主板上供电原理


在绝缘基板上印制3层以上印制电路的印制板称为多层板。它是由几层较薄的单面板或双面板教和而成,其厚度一般为1.2—2.5m顺。为了把夹在绝缘基板中间的电路引出,多层板上安装元件的孔需要金属化,即在小孔内表面涂效金属层,使之与夹在绝缘基板中间的印制电路接通。

主板上CPU核心供电电路就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMWControl(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这个稳定的电压就常说的“多相”供电中的“一相”。


印刷电路板的种类及主板上供电原理


单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。两个单相电路的并联可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。实际应用中还存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电气元件中较热的部分。

要注意的是,温度越高代表其效率越低。这样一来,如果电路的转换效率不是很高,那么采用两相供电的电路就可能无法满足CPU的需要,所以又出现了三相甚至更多相供电电路。不过这也带来了主板布线复杂化,如果此时布线设计不是很合理,就会产生影响高频工作的稳定性等一系列问题。目前在市面上见到的主流主板产品有很多采用三相供电电路,虽然可以供给CPU足够动力,但由于电路设计的不足,使主板在极端情况下的稳定性会在一定程度上受到限制。如要解决这个问题必然会在电路设计布线方面下更大的力气,而成本也随之上升。从概率上计算每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。所以供电电路越简单,越能减少出问题的概率。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。