智能仪器中光敏传感器和三极管器件的工作原理

发布时间:2019-01-9 阅读量:538 来源: 我爱方案网 作者: sunny编辑

如今智能化仪器的操作多为菜单式、傻瓜型。通过液晶屏上的菜单选项,用面板上三四个按键或旋转式光电编码开关,就能完成仪器操作所必需的参数设置、命令执行等必要的人机交互。该类仪器的程序结构也适应了其菜单式"傻瓜"界面的特点,用后台大量的编程工作换取了前台仪器操作的极其简单和方便。


智能仪器中光敏传感器和三极管器件的工作原理


交互界面的输入结构在菜单式界面的智能仪器中,人机交互的指令输入部件可用按键或旋转式光电编码开关。按键由增键、减键和确认键构成.使用这3 种操作可以用来在液晶显示屏上移动光标、数据输入和操作选定等。增键和减键用于选择菜单中选项时的光标移动,以及在设定数值时对数值大小的增减;确认键用于对选中的选项和设定的数值大小的确定。

键示意图按键的功能可以用旋转式光电编码开关来替代。旋转式光电编码开关的功能类似计算机上使用的鼠标,它有3 种操作:"左旋""右旋"和"按下选定", 可对应着按键输入时的增键、减键和确认键。光电编码开关的外形图、电原理图、输出信号真值表和波形图。该开关压下时②和③短路输出,旋转时,由把柄带动穿孔圆盘一起转动。开关内有2 个发光二极管、2 个光敏三极管和1 个穿孔圆盘,圆盘上的穿孔按特定规律分布。光敏二极管接收发光二极管发出的光,形成二路旋转输出信号"输出A"和"输出B".旋转时,当穿孔圆盘上的某个圆孔正对着发光二极管时,发光二极管发出的光通过该圆孔照射到光敏三极管上,三极管导通,输出低电平信号;当圆盘上的所有圆孔都错开发光二极管时,光敏三极管因收不到光信号而截止,输出高电平信号。


智能仪器中光敏传感器和三极管器件的工作原理

基于界面的交互过程


智能仪器中光敏传感器和三极管器件的工作原理


大屏幕点阵式液晶显示器和内置大容量程序存储器的微处理器的出现,给仪器仪表的智能化进程推波助澜。上述人机交互界面的软硬件设计,在工程项目中的初步尝试,基本达到了结构简单、操作方便、编程高效和界面友好的效果。用后台大量的工作换取前台操作的极其简单和方便,应是仪器仪表业内同行始终追求的境界。

光敏传感器是对外界光信号或光辐射有响应或转换功能的敏感装置,它是最常见的传感器之一,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。最简单的光敏传感器是光敏电阻,当光子冲击接合处就会产生电流。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。