电感存储电能及空芯与环形线圈电感特性

发布时间:2019-01-9 阅读量:692 来源: 发布人:

电感都会有一个”磁芯“,磁芯是磁性材料,不同的磁性材料对磁场的储存时间是不同的,比如铁放在磁铁上,再把磁铁拿走,此时铁上还会有磁性,并会保持一段时间,这就是铁存储了磁性。储能部分就是这个磁芯,首先是电流流过线圈后在磁芯上产生磁场,从而磁化磁芯,使磁芯储存了磁能,当无电流流过线圈时,磁芯释放磁场能量。


电感存储电能及空芯与环形线圈电感特性


磁芯在静态时,内部可看成拥有大量的小磁极,并且各个磁极的方向是随机的,不规律的。当线圈通过电流后,磁芯被磁化,内部的磁极被统一方向,完成“电生磁”的过程。当线圈无电流后,无磁场进行磁化,此时磁极将回复原位,即磁场变化产生电流,完成“磁生电”的过程。这就是电感存储电能并释放电能的过程,能量转换是在磁芯内部完成的。


电感存储电能及空芯与环形线圈电感特性


空芯电感主要是讯号处理用途,用作共振,接收,发射等等。空气可应用在甚高频的产品,故此很多变异要求不太高的产品仍在使用,因为空气不是固定线圈的最佳材料,故此,在要求越来越严格的产品趋势上,发展有限。环形线圈电感,是电感理论中很理想的形状, 闭磁路,很少EMI的问题,充分利用磁路,容易计算, 几乎理论上的好处,全归环形线圈电感, 可是,有一个最大的缺点,就是不好挠线,制程多用人工处理。


在磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈电感线圈),它是电子电路中常用的抗干扰元件,高频噪声有很好的屏蔽作用,故被称为吸收磁环,通常使用铁氧体材料制成,又称铁氧体磁环(简称磁环)。在磁环在不同的频率下有不同的阻抗特牲。在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。软磁电感是电子元器件,主要由圆环形磁芯,对铁粉,铁氧体, 围绕着它,或其他材料电线要做一个喇叭电感。纵场线圈被使用在广泛的应用,如高频线圈与变压器。软磁电感能有更高的问因素和更高的电感构造比同样电磁线圈。这是很大程度上因为较小的圈数时需要提供一个封闭的核心磁性的路径。这磁通在一个高渗透率只限于核心,禁闭所耗能量降低,可以被吸收到附近的物体,所以环形线圈提供一些芯。


环形线圈电感最大量的,是用铁粉芯作材料,跟树脂等混在一起,使得Air gap均匀分布在铁粉芯内部,做电感的,有一定的敏感度,当我们看到Air gap二字,就知道是用在power上,故此,铁粉芯环形线圈电感,是power电感最常用的一种,IDC可以达到20多安培。?我觉得,环形线圈电感的改良空间是十分大的,不妨往这方向研发和思考. 铁粉芯环形线圈电感的优点是环形,但缺点亦是环形,我前便曾说,使用者最喜欢的形状是方形,故此,在妥协下,环形线圈电感并不是最具优势。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。