发布时间:2019-01-24 阅读量:1078 来源: 我爱方案网 作者: sunny编辑
选用具有三角形接线绕组的三相变压器。当变压器有三角形接线绕组时,它提供包括3次谐波电流及其奇数倍谐波的零序电流通路,使这些谐波电流在三角形绕组内被短路,从而使变压器馈进給配电网络的谐波短路含量明显减少。在补偿电容器回路中串联一组电抗器。在未加Xc前,略去电阻,谐波源In母线处的谐波电压为:Un=Xsn•In;并联了补偿电容器后,则谐波源的输入谐波电抗为:此时谐波电压,注入系统的谐波电流Un,Isn>In,即并联电容器使系统的谐波被放大了。如果对应某次谐波有Xsn-Xcn=0即发生谐波,则其谐波电流、电压都趋于无穷大。为了摆脱这一谐振点,通常在电容器支路串接电抗器,其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感抗而不是容抗,从根本上消除了产生谐波的可能性。
对于 2 微米的 ASIC 技术节点以及上世纪 80 年代早期以前来说,电路单元 ( 逻辑门 ) 相关的延时与互连 ( 连接线 ) 相关延时的比例约 80:20 ,也就是说门延时约占每个延时路径的 80% 。这样一来可以用连线负载模型来估计互连延时,在连线负载模型中,每个逻辑门输入被赋予某个 “ 单位负载 ” 值,与某个特定路径相关的延时可以作为驱动门电路的强度和连接线上的总电容性负载的函数来计算得出。类似地,当在上世纪 80 年代后期 ( 大约引入 1 微米技术节点的时候 ) 第一个 RTL 综合工具开始用在 ASIC 设计中的时候,电路单元的延时与连线延时相比还是占主导地位,比例约为 66:34 。因此,早期的综合工具还是基于它们的延时估计方法,并使用简单的连线负载模型进行优化。由于电路单元的延时占据主导,因此初期综合引擎使用的基于连线负载的时序估计足够准确,下游的贴片电感器工厂布局布线引擎通常能在相对较少的几次反复 ( 在 RTL 和综合阶段之间 ) 条件下实现设计。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。