发布时间:2019-05-16 阅读量:968 来源: 我爱方案网 作者:
电化学液流电池(electrochemical flow cell)一般称为氧化还原液流电池(flow redox cell或者redox flow cell)是一种新型的大型电化学储能装置,正负极全使用钒盐溶液的称为全钒液流电池,简称钒电池.其荷电状态100%时电池的开路电压可达1.5V。

电解质溶液
全钒液流电池中的溶液既是电极活性物质又是电解液,如果浓度太高,则活性物质体积比能量高,但是势必增大电解液的电阻、黏度等;同时由于五价钒离子溶解度不高,高浓度的正极溶液在接近全充电态时,会析出红色多钒酸盐沉淀,从而堵塞多孔电极表面,导致电池无法使用。为了增大钒溶液的稳定性,考虑在溶液中加入添加剂,如一些络合剂、EDTA、吡啶等,还有如明胶等稳定剂。因此,适当提高溶液浓度和适量加入添加剂,是钒电池溶液的重要研究方向。研究表明,在钒硫酸溶液中分别添加2%甘油和2%硫酸钠,可提高溶液中钒离子的溶解度和稳定性。利用循环伏安法测量含添加剂的钒硫酸溶液,得出溶液中少量的甘油和硫酸钠不会对钒氧化还原反应的可逆性产生不利的影响;用含甘油的钒硫酸溶液作为电解液组装全钒电池,测试了电池的充放电性能,表明含2%甘油的钒硫酸溶液单位体积的电容量较大。
离子交换膜
隔膜起着隔离正负极电解质溶液、阻止不同价态钒离子相互渗透的作用,通过氢离子在膜中自由迁移传递电荷。电池要求选用钒离子透过率低、交叉污染小、H+离子透过率高、膜电阻小的离子交换膜。
离子交换膜是液流电池的重要组成部分,要求具备高离子选择性、高离子传导率及良好的化学稳定性。常见的离子交换膜主要有两类,即Nafion膜和聚烯烃类膜.。Nafion膜价格昂贵,而且大多数离子在膜内渗透严重,易造成膜的堵塞.聚烯烃类离子膜化学稳定性欠佳,影响系统使用寿命。对此,制备性能优良的新型离子交换膜是目前研究中的一个热点问题。
针对不同的液流电池体系,一些研究者分别合成了含磺酸基、羧基、季铵基等杂环联苯聚芳醚等一系列膜材料。为了提高膜的亲水性,通常采用共聚方法,即在聚合物主链中同时引入磺酸基或羧基,或采用含季铵基的离子膜和含磺酸基或羧基的离子膜复合等方法,以期在提高离子选择性的同时提高离子传导率。研究中还同时应用现代分析技术对合成的离子交换膜进行表征,包括膜的离子传导率、离子在膜内的扩散系数和膜的离子迁移数等的测定,研究离子交换膜材料的主链结构和离子基团种类(磺酸基、羧基、季铵基等)、数量、分布以及离子交换膜的微观结构等对膜的选择性、离子传导性的影响。表面处理和修饰可以改变膜的性能,例如,可利用辐射接枝等方法作膜的表面改性,或以多元胺等作交联剂使膜内聚合物适当交联,目的是提高膜的强度及其抗腐蚀性能,从而提高膜的使用寿命;又如,应用接枝技术在现有膜材料上引入不同的功能基团,以提高膜的亲水性、获得大小适中的膜孔、降低水及相关离子的透过率,从而提高膜的离子传导率。
离子在膜内的传递速率是衡量膜性能的重要指标,研究物质在离子交换膜内的传递机理将为提高离子传导率提供可靠依据.深入认识并建立离子在交换膜内的传递模型,研究在系统运行条件下物质与阳/阴离子交换膜内离子基团的相互作用,以及物质在膜内传递的动力学具有十分重要意义。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。