【投稿】双通道、6 A降压稳压器提供高效紧凑的解决方案

发布时间:2019-08-20 阅读量:22960 来源: 我爱方案网 作者: Zhongming Ye

系统设计人员被要求生产更小、效率更高的电源解决方案,以满足所有行业SoC和FPGA的高耗电需求。在先进的电子系统中,因为电源必须放在SoC或其外围设备(如DRAM或I/O设备)附近,因此电源封装的可占用空间至关重要。在便携式仪器中,如手持条码扫描仪或医疗数据记录仪系统,空间更为紧凑。


设计人员面临的问题不仅仅是找到一个在有限空间放得下的稳压器。紧凑型解决方案的要求往往与其他先进的电子产品要求相冲突:可靠的设计、高效率、大转换比、高功率、小尺寸以及良好的热性能。其中许多要求需要在其他领域进行权衡,这就给设计人员带来了一个困难且耗时的优化问题。LTC3636旨在通过双通道6 A降压稳压器简化设计人员的任务,该稳压器在关断时消耗非常低的待机电流,在高达4 MHz的频率下工作时,满载和轻载时都具有很高的效率。


小尺寸和4 MHz开关频率


电源设计中普遍存在的事实是,分配的应用空间很小。DC-DC转换器的体积和功率密度通常受限于庞大磁性元件、输入/输出电容、EMI滤波器和散热器。在降压功率转换器中,尺寸和效率往往没法同时满足:通过提高开关频率可以显著减小电感和输出电容的尺寸,但高频工作会增加电感和开关的开关损耗。这又使得在狭小空间进行热管理变得更加复杂。


LTC3636是一款双通道、每路输出6 A、高效率单芯片降压稳压器,能够采用最高20 V的输入电源电压。可编程开关频率可以设置为高达4 MHz。高开关频率显著减小了电感和电容的尺寸和值,但与许多高频解决方案不同,LTC3636还保持了高效率,可使用一些具有更低交流损耗和直流损耗的超小尺寸铁氧体电感。两个通道错相180°工作,且开关脉冲交错使纹波更低,反过来又可以减少输入电容值。


图1中的双通道降压转换器在4 MHz的频率下运行,并使用非常小的电压和电容。效率和热性能如图2所示。热图像显示低于40°C的温升,在VIN = 5 V室温下自然对流。


237333-fig-01.jpg图1.4 MHz双通道降压稳压器提供紧凑型解决方案。

237333-fig-02.jpg图2.效率曲线(左)和热图像(右)。条件:VIN = 5 V,自然对流。


整个负载范围内的高效率功率转换


整个负载范围内的高效率对于便携式设备和汽车应用至关重要。在重载下,功率损耗应较小,电路才能可靠运行。为了实现这个目标,可以优化重载下的电路设计,并且结合TMON引脚进行热监控,设计稳定的健热保护实现可靠的热管理,这样,散热器或强制气流散热就不需要了。


轻载下的高效率对于电池供电系统延长两次充电之间的运行时间也很重要。此外,低关断功耗是避免电池供电系统漏电的关键。同时权衡重载或轻载时的效率通常会限制普通电源整体解决方案的性能。


LTC3636稳压器具有低静态电流,可在输出电压高达5 V时实现高效率。而LT3636-1型号将VOUT范围扩大至12 V。该降压稳压器能够在3.1 V至20 V的输入电压范围内工作,同时每通道提供高达6 A的输出电流。图3显示的是一个高效率解决方案,而图4显示,其测得的效率在整个工作范围内一直很高。

237333-fig-03.jpg图3.高效率双通道降压稳压器。

237333-fig-04.jpg

图4.VOUT = 5 V和3.3 V的效率曲线。

237333-fig-05.jpg图5.12 A/0.85 V稳压器和负载瞬变的原理图。


可配置用于高达12 A的双相单输出


先进的SoC和FPGA电子系统在汽车、交通和工业应用中的激增需要更高性能的电源。这些先进SoC的功率需求不断增加,基于传统PWM控制器和MOSFET的解决方案必须采用单片稳压器,以便获得更小的尺寸、更高的电流能力和更高的效率。LTC3636旨在满足这些先进的SoC功率需求,同时满足SoC对方案尺寸和散热的限制。图5a显示两通道并行的电源的原理图,在0.85 V的电压下提供高达12 A电流。当VIN为3.3 V时,12 A输出负载的峰值效率为87%。负载瞬变如图5b所示。在此设计中,FB1和FB2引脚连接在一起,和RUN1和RUN2引脚一样。ITH1和ITH2引脚连接在一起,并设置外部补偿以最大限度地减少稳定状态下的电流失配以及瞬变。


结论


工业和汽车领域应用要求提供更高智能和自动化水平以及更多检测功能,使得电子系统数量激增,对电源性能的要求亦越来越高。LTC3636采用两个高效率电源轨简化了系统设计,每个电源轨可支持高达6 A电流,并且关断时消耗的待机电流非常低。LTC3636采用散热增强型、薄型28引脚、4 mm × 5 mm QFN封装。内置过温保护功能提高了可靠性。芯片提供了一个用户可选模式输入,允许用户根据轻载效率来权衡输出纹波。突发工作模式(Burst Mode®)可在轻载下提供最高效率,而强制连续模式提供最低输出纹波。

 


欢迎工程师或FAE来投稿,凡是未经发布的首发原创稿必有重金酬谢!投稿请联系包工头(微信ID:kuaibao52)

1068961199.jpg


  查看投稿细则》

 

 

相关资讯
革新辅助电源设计:1700V SiC MOSFET赋能20-200W高效系统​

在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。

安森美Hyperlux SG:攻克全局快门三大痛点 (高性能、高效率、低功耗)​

在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。

常关型SiC Combo JFET结构

安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。

920nm问世+低红曝优选:IR:6技术精准匹配多元红外应用场景

IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。

工业电动化浪潮:充电器设计的效率与尺寸挑战

工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。