发布时间:2019-10-10 阅读量:1866 来源: 我爱方案网 作者:
电解电容器的内部有储存电荷的电解质材料,分正、负极性,类似于电池,不可接反。正极为粘有氧化膜的金属基板,负极通过金属极板与电解质(固体和非固体)相连接。
无极性(双极性)电解电容器采用双氧化膜结构,类似于两只有极性电解电容器将两个负极相连接后构成,其两个电极分别为两个金属极板(均粘有氧化膜)相连,两组氧化膜中间为电解质。有极性电解电容器通常在电源电路或中频、低频电路中起电源滤波,退耦(ǒu)、信号耦合及时间常数设定、隔直流等作用。无极性电解电容器通常用于音响分频器电路、电视机S校正电路及单相电动机的起动电路。怎么判别定电解电容器的正负极和质量检查?

(1)判定正负极
电解电容器属于有极性元件,在电路中不允许反接,否则容易击穿损坏。对于无标记的电解电容器,可用下述方法判定其正负极。
1)外观判定
对于铝壳电解电容器(如CD型、CDX型)与铝壳连通的为负极。
对于CD11型小型电解电容器,可根据电极引线的长短来区分正负极,长引线是正极,短引线是负极。
2)用万用表判定
根据电解电容器的正向漏电电阻大于反向漏电电阻的特点来判别定正负极。将万用表拨到R×1k档,用交换表笔的办法分别测正、反向漏电阻。最后以漏电电阻较大的一次为准,此时黑表笔接的是电解电容器正极,红表笔接的是负极。
测量容量较大的电容时,在交换表笔进行第二次测量时应先将电容短路一下,防止出现表针打表的现象。对于刚使用不久的电解电容器进行测量时,必须先把两极短路一下然后再测,避免电容器内积存的电荷经万用表放电,烧毁表头。另外,不能用上述方法判断正向漏电严重的电解电容的极性。
(2)检查电解电容器容量及漏电的大小
将万用表拨到R×1k档,黑表笔接电解电容器的正极,红表笔接负极,即可检查其容量的大小和漏电程度。
1)检查容量的大小
测量前,把被测电解电容器短路一下。接上万用表的一瞬间,表内电池E通过R×1k档的内阻(欧姆中心值R0)向C充电。由于电容两端的电压不能突变,刚接通电路时电容上的电压Uc等于零,所以充电电流为最大I=IM=E/R0。只要电容量足够大,表针就能向右摆过一个明显的角度。以后随着Uc的升高,充电电流逐渐减小,表针又向左摆回。充电时间常数τ=R0C(s),当R0确定后,C愈大,τ值也愈大,充电时间就愈长。通常认为当t=5τ时Uc=0.99E,即C上已充好电。例如MF30型万用表R×1k档的R0=25kΩ,若取C=1μF充电时间为:
由于充电时间太短,只能看到表针有轻微摆动。当C≥10μF时,表针摆动幅度很大,甚至能冲向欧姆零点。取表盘总分度格数nM=50格,表针偏转格数n与电容量的关系如表所示。
表表针偏转格数与电容量的关系
注:MF30型万用表拨到R×1k档
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。