自复保险丝的工作原理及自复保险丝的动作过程简介

发布时间:2019-11-27 阅读量:1135 来源: 我爱方案网 作者:

自恢复保险丝,是一种过流电子保护元件,采用高分子有机聚合物在高压、高温,硫化反应的条件下,掺加导电粒子材料后,经过特殊的工艺加工而成。传统保险丝过流保护,仅能保护一次,烧断了需更换,而自恢复保险丝具有过流过热保护,自动恢复双重功能。

 自复保险丝的工作原理及自复保险丝的动作过程简介.png

自复保险丝的原理

  

自复保险丝是由经过特殊处理的聚合树脂(Polymer)及分布在里面的导电粒子(Carbon Black)组成。在正常操作下聚合树脂紧密地将导电粒子束缚在结晶状的结构外,构成链状导电电通路,此时的自复保险丝为低阻状态(a),线路上流经自复保险丝的电流所产生的热能小,不会改变晶体结构。当线路发生短路或过载时,流经自复保险丝的大电流产生的热量使聚合树脂融化,体积迅速增长,形成高阻状态(b),工作电流迅速减小,从而对电路进行限制和保护。当故障排除后,RF/WHPTC重新冷却结晶,体积收缩,导电粒子重新形成导电通路,自复保险丝恢复为低阻状态,从而完成对电路的保护,无须人工更换。

  

自复保险丝的动作过程

  

自复保险丝主要是由特殊处理过的聚合树脂掺加导体组成,在正常操作情况下,聚合树脂将导体紧密地束缚在其晶状结构内构成一个低阻抗的链,保险丝两端相当于短路导通状态,如图1a所示。因为线路上流经保险丝的电流小,从而产生的热能也少,所以不会改变它的晶状结构。然而,当异常电流发生时,如图1b所示,导体上所产生的热能使聚合物由结晶状态变成胶状,在此状态下,被束缚在聚合物上的导体便会断开,保险丝内部阻抗迅速增加,从而限制了异常电流的经过。当异常原因消除后,导体链又重新连接,保险丝恢复正常导通状态。

  

自复保险丝的相关参数

  

IH:最大工作电流(25℃)IT:最小动作电流(25℃)

Itrip:过载电流

Tmax:过载电流最大动作时间

Vmax:最大过载电压

Imax:最大过载电流

Rmin:最小电阻(25℃)

Rmax:最大电阻(25℃)

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。