发布时间:2019-12-2 阅读量:978 来源: 我爱方案网 作者:
传统应用的滤波器一般是由金属同轴腔体实现(实现原理如图1所示),金属同轴腔体由于自身材料损耗的原因,在限定腔体尺寸的情况下,无法取得很高的品质因数(Q值),导致各项性能指标都受到了限制,即使在金属表面采取一定的表面处理,也无法取得令人满意的结果。
腔体滤波器实现结构原理
在欧美以及日本等发达国家,频率应用非常密集,导致了普通金属腔体滤波器不能实现高抑制的系统兼容问题,而采用介质材料来制作腔体滤波器就从根本上解决了上述问题,介质滤波器抛弃了传统的金属腔体,采用了一种高Q值的陶瓷介质材料,大大减小了腔体自身的损耗,提高滤波器的各项性能,特别是在相邻较近的频带能实现高抑制要求,而对插入损耗指标影响很小。相比传统金属腔谐振器,介质滤波器具有插损小、高抑制、温度漂移特性好的特点,而且功率容量和无源互调性能都得到了很大的改善。介质滤波器作为一款新型的无源射频器件,代表着高端射频器件的发展方向,凭借其优良的性能,势必会在民用通信领域中拥有为广阔的应用空间。
而介质滤波器应用到的介质谐振子不是自然界存在的,必须进行人工合成制作,需要通过各种材料,按照一定的比例铸压成为目前我们使用的介质谐振腔,制作工艺复杂也就导致了其价格要远大于一般金属腔体滤波器。
另外,由于需要实现高Q值的谐振腔体实现需求,而且介质滤波器的体积也明显大于传统滤波器。
目前国内各个设备供应商都在积极的研发新型的介质滤波器产品,但是受到介质滤波器的技术难度以及开发成本高等各因素的限制,介质滤波器的应用不是十分广泛。
介质带通滤波器性能特点
▲很宽的工作频率覆盖范围;
▲低插入损耗、高的带外抑制;
▲多达数十级的小型化结构设计;
▲高达0.8%~30%的工作带宽;
▲温度范围从民用级到军用级;
▲多种形式的封装结构和灵活的输出接口形式。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。