发布时间:2019-12-6 阅读量:1044 来源: 我爱方案网 作者:
电路图原理:OH003,004的物体检测电路图
物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。从传统的人工设计特征加浅层分类器的框架,到基于深度学习的端到端的检测框架,物体检测一步步变得愈加成熟。

物体检测算法的演变分为两个阶段:一个就是基于传统特征的解决方法,另外一个就是深度学习算法。在2013年之前主流检测算法是传统的特征优化检测方法。但是,在2013年之后,整个学术界和工业界都逐渐利用深度学习来做检测。
基于深度学习的早期的物体检测,大都使用滑动窗口的方式进行窗口提取,这种方式本质是穷举法R-CNN。后来提出Selective Search等区域窗口提取算法,对于给定的图像,不需要再使用一个滑动窗口进行图像扫描,而是采用某种方式“提取”出一些候选窗口,在获得对待检测目标可接受的召回率的前提下,候选窗口的数量可以控制在几千个或者几百个。
后来,又出现了SPP,其主要思想是去掉了原始图像上的crop/warp等操作,换成了在卷积特征上的空间金字塔池化层。那么为什么要引入SPP层呢?其实主要原因是CNN的全连接层要求输入图片是大小一致的,而实际中的输入图片往往大小不一,如果直接缩放到同一尺寸,很可能有的物体会充满整个图片,而有的物体可能只能占到图片的一角。SPP对整图提取固定维度的特征,首先把图片均分成4份,每份提取相同维度的特征,再把图片均分为16份,以此类推。可以看出,无论图片大小如何,提取出来的维度数据都是一致的,这样就可以统一送至全连接层。
实际上,尽管R-CNN和SPP在检测方面有了较大的进步,但是其带来的重复计算问题让人头疼,而Fast R-CNN的出现正是为了解决这些问题。Fast R-CNN使用一个简化的SPP层——RoI(Region of Interesting)Pooling层,其操作与SPP类似,同时它的训练和测试是不再分多步,不再需要额外的硬盘来存储中间层的特征,梯度也能够通过RoI Pooling层直接传播。Fast R-CNN还使用SVD分解全连接层的参数矩阵,压缩为两个规模小很多的全连接层。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。