电磁阀PWM驱动电路设计

发布时间:2019-12-12 阅读量:1374 来源: 我爱方案网 作者:

电路功能: 当控制器输出PWM脉冲时,电磁阀工作;没有输出PWM时,电磁阀不工作。


电磁阀PWM驱动电路设计


电路分解:整个电路根据光耦可分为两部分:左边为光耦输入部分,也是整个电路PWM信号的输入部分;右边为光耦输出部分,也是电磁阀的驱动部分。这两部分通过光耦隔离,两边的地都不一样。整个电路的工作过程:当光耦没有PWM信号输入时,光耦发光二极管截止,光耦的光电晶体管也是截止状态,Q1是一个NMOS,也处于截止状态,电磁阀没有电流,不工作。


当光耦有PWM信号输入时,光耦发光二极管导通,触发光电晶体管也导通。24V电源经电阻R1,光电晶体管的CE极,电阻R3分压使NMOS IRF540N的栅极为高电平,触发MOS管导通,电磁阀线圈有电流流过,电磁阀触发动作。


二极管D1为电磁阀的泄放二极管,防止NMOS被高压损坏。电容C1起滤波作用,但同时也会增加MOS管的开关损耗。注意:在实际制作时,要注意电磁阀驱动这块,要让MOS管处于开关状态,以免它发热严重。


推荐阅读:

地址译码电路简介

高速光电二极管信号调理电路图

高频电路设计是应注意哪些方面?

电子工程师PCB叠层设计的注意事项

LabVIEW,FPGA的深度应用简介

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。