基于TI ToF传感器技术的流量计量电路方案设计

发布时间:2019-12-19 阅读量:1411 来源: 我爱方案网 作者:

超声传感技术利用超声波的飞行时间(TOF)与管段内介质流速相关,求得超声波顺流和逆流方向传播的时间差,最终来测量和计算流量。此技术在测量宽流速变化范围时非常出色,同时能够处理水和油等液体及空气与甲烷等气体。


基于TI ToF传感器技术的流量计量电路方案设计


基于 TOF 的超声波测量方式是根据上游和下游方向超声信号传播时间的差异来测量流速。超声波在介质流动方向上的传播速度较快,而在逆流动方向时传播速度较慢。无论换能器放置在管道内还是夹在管道外,此项技术均可正常应用。此测量方式要求在两个换能器之间具有直接通路,这就需要仔细选择安装换能器的管道机械构造。如果液体中有气泡出现,此项技术就失去了作用,因为它会对超声波信号造成重大衰减。


由于超声波信号在单一介质与在多种混合介质中的传播速度不同,因此基于 TOF 的超声技术还可用于分析介质成分。超声波流量计配置基于 TOF 的超声波流量计具有两种构造:插入式和外夹式。插入式流量计属于侵入式,其中传感器安装在管道内并与液体发生接触;外夹式流量计属于非侵入式,其传感器安装在管外表面上,可穿透管壁进行声波测量。


插入式呈对角线安装的换能器布局插入式流量计可以呈对角线安装,让传感器直接相对,如上图所示。或者,超声波也可以通过管道表面反射从发射传感器到达接收传感器,如下图所示。在大口径流量计应用中,通常采用两对换能器,以提升性能,解决下下图所示大口径信号衰减较大的问题。 


基于TI ToF传感器技术的流量计量电路方案设计

基于TI ToF传感器技术的流量计量电路方案设计


插入式相互反射的换能器布局 


基于TI ToF传感器技术的流量计量电路方案设计


基于TI ToF传感器技术的流量计量电路方案设计


下图展示了一种外夹式传感器的配置,由于超声波需要穿透管道材料,因此会发生更大幅度的信号衰减。 


基于TI ToF传感器技术的流量计量电路方案设计

基于TI ToF传感器技术的流量计量电路方案设计

超声波流量计面临的一大主要挑战是需要在每小时几升到上万升的大流速范围内保持精度。在一些应用中,另一个挑战是在 0°C 到 85°C 的温度范围内保证流速精度。由于流体中超声波的速度随流体的温度变化而变化,因此在流体温度发生变化时,传播时间的差异会给流速测量带来误差。一般来说,如果不考虑温度,则会产生超过5%的流速计算误差。为了提高精度,系统将需要安装一个温度传感器。不过,设计一种不需要测量温度的检测方法。这种方法需要使用上行和下行传播的绝对时间或 TOF和时间差来计算该介质的流速。


推荐阅读:

CFB放大器的最新应用原理电路

多种波形信号发生器

多功能高精度的采样保持电路图

电子自动售货机电路设计

电子闪光胸花电路方案设计

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。