发布时间:2019-12-24 阅读量:1056 来源: 我爱方案网 作者:
由于这些空间限制和立法要求,LED内部功率转换的首选拓扑是采用初级端调节(PSR)的单级反激转换器。这可通过使用比次级端调节拓扑更少的器件和更小的电容器来实现,半导体制造商现在提供一系列的器件来满足这一需求。
PSR的一个优点是它不需要任何次级端反馈,这简化了变压器的设计,无需光电隔离。所采用的调节类型对于实现PFC和THD目标也很重要。为了满足这些要求,制造商正在转向非连续导通模式(DCM)。在这种模式下,存储在变压器中的电荷在开关晶体管导通前完全耗尽,因此输出二极管的电压也达到零。这将导致没有电流流过初级端或次级端的一段时间,即所谓的死区时间,因而这种反激拓扑被命名为非连续。它的优点是整个二极管没有损耗,在输出功率较低的应用中,它可以产生一个相对较小的变压器。

但是,它容易受到纹波电流的影响,会导致产生损耗。谷开关是DCM的延伸,当输出电压的振铃处于最低值时使晶体管导通。这发生在死区时间之初的第一次振荡,此时将重新导通晶体管和重新启动功率传输周期。这要求控制器能够检测输出电压上的振铃,并在检测到处于谷底时切换。这通常还需要能够根据输出功率需求改变开关时间;提前导通以满足高需求,或者在需求低的情况下晚一点切换。这种特性也被称为电压折返,改变开关频率可以降低电磁干扰,同时,谷开关也会由于可变的开关时间而导致更高的输出纹波。
DCM和谷开关的一个流行的替代方案是准谐振(QR)模式,也称为临界导通模式(CRM)。在这种模式下,当控制器检测到输出电压上的第一次振荡的底部时,晶体管导通,提供较低的开关损耗和所有模式中最高的效率,但使用QR/CrM实现好的PFC和THD是具挑战性的。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。