发布时间:2019-12-24 阅读量:863 来源: 我爱方案网 作者:
对于许多系统设计,有必要监测高功率组件(处理器、现场可编程门阵列、场效应晶体管)以确保系统和用户安全。温度读数的精确性非常重要,因为它使设计人员能够在提高性能的同时保持在安全限制内,或者通过避免在其他地方过度设计来降低系统成本。从 PCB 到温度传感器的热传递本地温度传感器测量它们自己的管芯温度以确定特定区域的温度。因此,了解管芯与传感器周围物体或环境之间的主要温度传导路径至关重要。主要通过两种路径导热:通过连接到封装的管芯连接焊盘 (DAP)或通过封装引线引脚。DAP(如果存在)提供 PCB 和管芯之间最主要的导热路径。

带有 DAP 的封装如果封装类型不包含 DAP,则引线和引脚提供最主要的导热路径。

不带 DAP 的封装模塑化合物提供额外的导热路径,但由于其低导热性,通过模塑化合物本身进行的任何热传递均比通过引线或DAP进行的热传递更慢。热响应封装类型决定了温度传感器对温度变化的响应速度。下图显示了用于温度测量的不同类别的选定表面贴装技术封装类型的相对热响应速率。
不带模塑化合物的封装(芯片级封装、管芯尺寸球栅阵列封装)和带有 DAP 的封装(四方扁平无引线 [QFN] 封装、双边扁平无引线 [DFN] 封装)是专为需要从 PCB 快速进行热传递的应用而设计的,而不带 DAP 的封装是专为需要较慢响应速率的应用而设计的。快速的热响应速率使温度传感器能够快速响应任何温度变化,从而提供准确的读数。设计准则 — 底部安装传感器位置应尽可能靠近要监测的热源。应避免在发热IC 和温度传感器之间的 PCB 上穿孔或切口,因为这可能会减慢或阻止热响应。如果可能,请将温度监测器安装在PCB 底部直接位于热源下方。
在热源和温度监测器之间建立热平衡的最有效方法是使用地层。应使用从热源延伸到温度传感器的坚固地层。
在具有热电区域或高耗电 IC 的 PCB 设计中,温度监测至关重要。必须评估本地温度传感器的选择是否符合相关设计的系统要求和保护方案。应考虑传感器位置和高导热率路径,以此在传感器和发热元件之间建立快速热平衡。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。