发布时间:2019-12-30 阅读量:1022 来源: 我爱方案网 作者:
模拟光端机采用了PFM调制技术实时传输图象信号。发射端将模拟视频信号先进行PFM调制后,再进行电-光转换,光信号传到接收端后,进行光电转换,然后进行PFM解调,恢复出视频信号。由于采用了PFM调制技术,其传输距离能达到50Km或者更远。通过使用波分复用技术,还可以在一根光纤上实现图象和数据信号的双向传输,满足监控工程的实际需求。
模拟光端机的原理
模拟光端机采用的是基带视频信号直接光强度调制(简称AM)或脉冲频率调制(PFM)技术。模拟光端机是比较成熟的产品,也是传统光端机厂商的主导产品。
AM调制的工作原理是在光发射端通过基带视频信号直接调制光源,使输出光的强度随视频信号的幅度线性变化,然后在光接收端通过光电探测器将光信号还原成电信号,经过放大和增益控制电路,得到稳定的视频信号。在接收端,必须具有自动增益控制电路,其作用除了可以使接收机的信号动态范围扩大外,更重要的是因为这种系统接收端的输出信号是随着收到的光功率的大小而变化的,因而自动增益控制(AGC)使接收端视频信号输出电平维持衡定的接口电平。在该设备中,通常采用线性度较好的发光二极管LED(常用于多模设备)或同轴激光器LD作为光源。一般系统性能指标可以达到:加权信噪比>54dB,微分增益
PFM调制传输方式是目前模拟视频光纤传输方式中传输质量最高的方式之一,其原理是先将视频信号采用脉冲频率调制,再将被调制信号PFM进行光强度调制。脉冲重复频率随信号幅度大小呈线性变化,而脉宽保持不变。PFM是信号光强度调制前的一种预处理过程,信号经过脉冲调制后,频谱会变宽,并以此可以换取传输质量的提高。而PFM处理带来的传输带宽的增加,对于带宽极宽的光纤来说并不存在什么问题,而且由于光源的非线性对系统的影响不大,故光调制深度可以增加,进一步提高系统的信噪比。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。