发布时间:2020-01-7 阅读量:1381 来源: 我爱方案网 作者:
MCU没有CAN或CAN接口数量不够怎么办?目前市面上有串口转CAN的相关模块或设备,但大家知道串口转CAN是如何实现的吗?转换后的帧格式是如何的?本文将为大家详细介绍串口经过转换后的CAN帧格式与注意事项。
适用场景
串口转CAN模块在什么时候需要用到呢?一是老产品面临升级,需要用到CAN总线通信,但硬件平台中的MCU没有集成CAN总线的控制器。二是选用的MCU已经包含CAN总线接口,但数量上不能满足项目需求。若出现类似以上两种情况且MCU有闲置串口,则可以选用串口转CAN模块解决。

图1 应用行业
使用方法
该类模块可以很方便地嵌入到具有UART接口的设备中,在不需改变原有硬件结构的前提下使设备获得CAN-bus通讯接口,实现具有UART设备和CAN-bus网络之间的数据通讯。工业级的转换模块内部还包括实现带隔离的CAN和UART转换所必须的模拟和数字器件、光电耦合器、DC/DC变换器、CAN-bus接口等。
转换说明
CSM100系列模块提供3种协议转换方式:透明转换、透明带标示转换、自定义协议转换。下面以CSM100系列的模块简述模块的透明转换格式。
该模式下,CSM100接收到一侧总线的数据就立即转换发送至另一总线侧。该模式下的模块数据转换效率最高,能承担较大流量的数据传输。串行帧转CAN帧时,模块将来自串口的数据直接打包,并插入预先配置的CAN帧信息、帧ID一同作为一帧数据发送到总线上。同理,来自CAN总线上的数据将按顺序拆分为字节流发送到串口上,字节流的前几个字节为该CAN帧的信息。
说到这,大家肯定有个疑惑,CAN帧的信息及CAN帧ID是如何表示的呢?
帧信息主要用来区分标准帧、扩展帧,长度为1个字节。在“自定义协议转换”中,标准帧固定为 0x00, 扩展帧固定为 0x80; 在“透明转换”“透明带标识转换” 中, 标准帧为 0x0_,扩展帧为 0x8_,其中“_” 代表每个帧中的数据域长度, 范围为 0~8。
标准帧的帧ID拆分为2个字节表示,扩展帧的帧ID拆分为4个字节表示。如果实际配置时给帧ID预留的只有一个字节且帧类型为扩展帧,方向是CAN帧转串行帧,那么将只能得到帧ID的高8位。如果实际配置时给帧ID预留的只有一个字节且帧类型为扩展帧,方向是串行帧转CAN帧,那么将帧ID的高8位正常填充,其他三字节全补零。
假设配置的转换成的CAN报文帧信息为“标准帧”,配置的帧ID1,ID0分别为“0x01,0x23”,串行帧的数据为01,02,03,04,05,06,07,08共8个字节,那么转换格式如图5。CAN报文的帧ID为0x0123(用户配置),帧信息:标准帧(用户配置),串行帧中的数据部分将不作任何修改地转换到CAN报文中。

图5 串行帧到CAN帧
假设CAN报文中帧ID1为0x01,帧ID0为 0x23,数据为0x12,0x34,0x56,0x78,0xab,0xcd,0xef,0xff,则CAN报文和转换后的串行帧如图6。CAN报文的帧信息(0x08)转换到串行帧中的第1个字节(0x08),CAN报文中的ID:0x0123依次转换到串行帧中的第2个字节(0x01)及第3个字节(0x23)。CAN报文的数据域将不作任何修改地转换到串行帧中的数据部分。
总结
以上为串口转CAN透明格式下的转换方式,后续笔者将新增透明带标示转换、自定义协议转换以及moudbus转换的内容,欢迎持续关注。

推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。