发布时间:2020-01-13 阅读量:861 来源: 与非网 发布人: CiCi
(原标题:台湾5G频谱卖出天价,说它是全球最贵不为过?)
据外媒报道,台湾 5G 频谱竞标已经进入第 19 天,3.5GHz 频段经过 190 个回合竞价后,带动总金额正式突破千亿新台币大关,达到 1005 亿新台币。其中,3.5GHz 的 300M“黄金频段”竞标金额已达 988 亿新台币。
市场人士分析,如果近日仍没有运营商妥协并放弃部分频谱需求,金额还将继续上涨,接下来需要关注,5G 频谱竞标金额,能否超过 4G 频谱第一次竞标的 1186.5 亿新台币的“天花板”。
按照之前预期,到 2019 年底将可完成竞标,但由于竞争太激烈,直到现在仍未分出胜负。
台湾 5G 频谱竞标价格已突破千亿新台币大关
台湾本次 5G 竞标包括三块频段,其中 3.5GHz 频段的 270M 频宽,底价 243 亿新台币;28GHz 频段 2500M 频宽,底价 32 亿新台币;1.8GHz 频段 20M 频宽,底价 32 亿新台币。
3.5GHz 频段竞争最为激烈。主管机构为本次 5G 频谱竞标设置了多重拍卖机制,确保 5G 频谱价高者得。例如,运营商可以共建共享,但前提是必须有频谱,所以,即使价格再高,运营商也只能咬牙死撑,谁也不愿放弃。
此前台湾媒体已经算过一笔账,台湾几大运营商能够动用的全部“家底”约 900 亿新台币。即使以当前的竞标金额来看,五大运营商已经为了 5G 频谱,掏空多年积攒的“家底”。
以中华电信、台湾大、远传三大运营商各付出 300 亿新台币、250 亿新台币、250 亿新台币而论,预估金额占到三家运营商市值的 4%、6%、11%,将对未來收益造成 6%、13%、及 18%不等的负面影响。
数据显示,目前全球各地国家和地区,台湾的 1000 亿新台币金额只低于德国和意大利 5G 频谱拍卖金额,但如果按照人口数量、牌照年限来看,台湾早已成为全球第一。
有学者预测,台湾 5G 频谱竞标机制,将让运营商“口袋见底、发出哀嚎”为止。5G 月资费恐怕要超过 2000 新台币,远超民众能够接受的千元以下资费。
5G 比 4G 到底快多少?
在 2015 年的 MWC 上国内外厂商纷纷展示各自在 5G 上的进展之后,5G 就瞬间成为了业界的讨论的焦点,在媒体竭尽溢美之词的同时,芯片商、通信设备商以及电信运营商无一例外开始倾其所有布局下一代通信技术,目的就是抢占话语权。
对于数消费者而言,5G 的价值在于它拥有比 4g LTE 更快的速度(峰值速率可达几十 Gbps),例如你可以在一秒钟内下载一部高清电影,而 4G LTE 可能要 10 分钟。也正是因为这一得天独厚的优势,业界普遍认为 5G 将在无人驾驶汽车、VR 以及物联网等领域发挥重要作用。
和 4G 相比,5G 的提升是全方位的,按照 3GPP 的定义,5G 具备高性能、低延迟与高容量特性,而这些优点主要体现在毫米波、小基站、Massive MIMO、全双工以及波束成形这五大技术上。
毫米波
众所周知,随着连接到无线网络设备的数量的增加,频谱资源稀缺的问题日渐突出。至少就现在而言,我们还只能在极其狭窄的频谱上共享有限的带宽,这极大的影响了用户的体验。
那么 5G 提供的几十个 Gbps 峰值速度如何实现呢?
众所周知,无线传输增加传输速率一般有两种方法,一是增加频谱利用率,二是增加频谱带宽。5G 使用毫米波(26.5~300GHz)就是通过第二种方法来提升速率,以 28GHz 频段为例,其可用频谱带宽达到了 1GHz,而 60GHz 频段每个信道的可用信号带宽则为 2GHz。
在移动通信的历史上,这是首次开启新的频带资源。在此之前,毫米波只在卫星和雷达系统上被应用,但现在已经有运营商开始使用毫米波在基站之间做测试。
当然,毫米波最大的缺点就是穿透力差、衰减大,因此要让毫米波频段下的 5G 通信在高楼林立的环境下传输并不容易,而小基站将解决这一问题。
小基站
上文提到毫米波的穿透力差并且在空气中的衰减很大,但因为毫米波的频率很高,波长很短,这就意味着其天线尺寸可以做得很小,这是部署小基站的基础。
可以预见的是,未来 5G 移动通信将不再依赖大型基站的布建架构,大量的小型基站将成为新的趋势,它可以覆盖大基站无法触及的末梢通信。
因为体积的大幅缩小,我们设置可以在 250 米左右部署一个小基站,这样排列下来,运营商可以在每个城市中部署数千个小基站以形成密集网络,每个基站可以从其它基站接收信号并向任何位置的用户发送数据。当然,你大可不必担心功耗问题,雷锋网之前曾报道过:小基站不仅在规模上要远远小于大基站,功耗上也大大缩小了。
除了通过毫米波广播之外,5G 基站还将拥有比现在蜂窝网络基站多得多的天线,也就是 Massive MIMO 技术。
Massive MIMO
现有的 4G 基站只有十几根天线,但 5G 基站可以支持上百根天线,这些天线可以通过 Massive MIMO 技术形成大规模天线阵列,这就意味着基站可以同时从更多用户发送和接收信号,从而将移动网络的容量提升数十倍倍或更大。
MIMO(Multiple-Input Multiple-Output)的意思是多输入多输出,实际上这种技术已经在一些 4G 基站上得到了应用。 但到目前为止,Massive MIMO 仅在实验室和几个现场试验中进行了测试。
隆德大学教授 Ove Edfors 曾指出,“Massive MIMO 开启了无线通讯的新方向——当传统系统使用时域或频域为不同用户之间实现资源共享时,Massive MIMO 则导入了空间域(spatial domain)的途径,其方式是在基地台采用大量的天线以及为其进行同步处理,如此则可同时在频谱效益与能源效率方面取得几十倍的增益。”
毋庸置疑,Massive MIMO 是 5G 能否实现商用的关键技术,但是多天线也势必会带来更多的干扰,而波束成形就是解决这一问题的关键。
波束成形
Massive MIMO 的主要挑战是减少干扰,但正是因为 Massive MIMO 技术每个天线阵列集成了更多的天线,如果能有效地控制这些天线,让它发出的每个电磁波的空间互相抵消或者增强,就可以形成一个很窄的波束,而不是全向发射,有限的能量都集中在特定方向上进行传输,不仅传输距离更远了,而且还避免了信号的干扰,这种将无线信号(电磁波)按特定方向传播的技术叫做波束成形(beamforming)。
这一技术的优势不仅如此,它可以提升频谱利用率,通过这一技术我们可以同时从多个天线发送更多信息;在大规模天线基站,我们甚至可以通过信号处理算法来计算出信号的传输的最佳路径,并且最终移动终端的位置。因此,波束成形可以解决毫米波信号被障碍物阻挡以及远距离衰减的问题。
除此之外,雷锋网(公众号:雷锋网)最后要提到 5G 的另一大特色——全双工技术。
全双工
全双工技术是指设备的发射机和接收机占用相同的频率资源同时进行工作,使得通信两端在上、下行可以在相同时间使用相同的频率,突破了现有的频分双工(FDD)和时分双工(TDD)模式,这是通信节点实现双向通信的关键之一,也是 5G 所需的高吞吐量和低延迟的关键技术。
在同一信道上同时接收和发送,这无疑大大提升了频谱效率。但是 5G 要使用这一颠覆性技术也面临着不小的挑战,根据《移动通信》之前发布的资料显示,主要有一下三大挑战:
1. 电路板件设计,自干扰消除电路需满足宽频(大于 100MHZ)和多 MIMO(多于 32 天线)的条件,且要求尺寸小、功耗低以及成本不能太高。
2. 物理层、MAC 层的优化设计问题,比如编码、调制、同步、检测、侦听、冲突避免、ACK 等,尤其是针对 MIMO 的物理层优化。
3. 对全双工和半双工之间动态切换的控制面优化,以及对现有帧结构和控制信令的优化问题。
因此,雷锋网想说的是,尽管 5G 的势头远远超过了之前的 4G,但 5G 的未来仍充满了不确定性,现在我们需要等待的是这些技术从实验阶段走向实用。
三星电子近期在第六代1c纳米级DRAM晶圆测试中实现重大突破,良率跃升至50%-70%,较2023年不足30%的水平翻倍增长。这一进展源于其研发团队对芯片结构的重新设计,通过创新性架构调整显著提升能效与生产稳定性。此前因技术优化导致的量产延迟已通过激进投资策略弥补,三星正同步推进平泽工厂P3/P4生产线的设备部署,为年内启动大规模量产铺平道路。
全球5G网络规模化部署面临射频系统集成度低、散热效率不足的核心挑战。Qorvo作为射频技术领导者,针对性推出两款高性能组件——QPQ3550 BAW滤波器和QPA9862预驱动放大器,通过系统级创新推动5G mMIMO基站与固定无线接入设备的性能跃迁。
全球晶圆代工大厂联电(UMC)于6月20日回应市场动向,明确表态将中国台湾作为产能扩张核心基地,同步整合先进封装技术以提升产业链价值。公司财务长刘启东强调,虽未证实南科购置瀚宇彩晶厂房的传闻,但将持续评估对营运具实质效益的在地化投资,包括厂房扩充、技术合作与新产线部署。
在智能手机、AR/VR设备加速普及3D感知技术的浪潮中,直接飞行时间(DToF)传感器因其卓越的测距精度,已成为实现精准对焦、沉浸式交互及环境建模的核心元件。然而,传统电源方案受限于体积臃肿、输出纹波干扰等痛点,严重制约了传感器性能的充分发挥。圣邦微电子推出的SGM3807电源管理集成电路(PMIC),以突破性架构攻克这些挑战,为基于单光子雪崩二极管(SPAD)的DToF系统提供稳定、高效、紧凑的供电解决方案。
在智能驾驶飞速发展的时代,5.9GHz频段的C-V2X(蜂窝车联网)和5.8GHz频段的DSRC(专用短程通信)已成为车辆与环境交互的关键神经。然而,GHz频段内日趋复杂的电磁环境却为通信灵敏度与可靠性带来严峻挑战。传统噪声抑制元件在应对高频宽范围干扰时力不从心,高性能宽频噪声解决方案成为行业急需突破的技术瓶颈。村田制作所(Murata)以其深厚的材料技术积淀和创新设计,适时推出了革命性的片状铁氧体磁珠——BLM15VM系列,直击高频车联网通信的核心痛点。