发布时间:2020-09-28 阅读量:8407 来源: 我爱方案网 作者: 我爱方案网
大功率LED固体照明开发,单芯片W级功率LED现已达到1W、3W和5W。然而实际上大功率LED的发热量却比小功率LED高数十倍,而且温升还会使发光效率大幅降低,即使封装技术允许,热量低于LED芯片的接合温度却有可能超过容许值。因此低功率多芯片式多个LED组合成LED固体照明光源。

在散热问题上的处理相对较容易,多芯片组合的LED固体照明光源,其光通量可达600Lm。当输出光通量为1000Lm时,耗电量为30W,最大输入功率为50W,发光效率达33Lm/W。 传统的LED灯封装结构,一般用导电或非导电胶将芯片装在小尺寸的反射杯中或载片台上,由金丝线完成器件的内外连接后用环氧树脂封装而成,其热阻高达250℃~300℃。对于功率型LED芯片,可采用低阻率、高导热性的材料粘结芯片,在芯片下部加铜或铝等金属热沉,并采用半封装结构,加速散热降低热阻。
叠层结构LED固体照明,封装基板散热设计,首先要通过提高材料热导系数,降低热膨胀系数不匹配度来增强LED热处理性。其次要考虑散热通道及散热板的热容量,散热通道畅通、散热好、散热板热容量大、热传导性能好、热阻小,LED结升温就慢,对LED发光性能就有很好的保障,也就能实现多个LED集群式封装。
双面线路板两端焊接有金属散热板,LED芯片直接焊装在散热金属板上,再通过金丝焊线,连接另一端的金属散热板。金属散热板既是LED封装基板,也是连接外部的冷却装置,LED供电通过双面线路板传至两端金属散热板。把该种结构实现串联或并联,就可实现多个或集群式LED封装,从而达到W级LED固态照明目的。该种设计也可将封装好的贴片发光二极管两极焊接在两端散热板上。
散热板为一环状金属散热筒,中间为一个环形的双层线板,LED芯片直接焊装在环状金属散热筒上,其热传导功能与图1原理一样,通过串联,实现集群式LED环状360发光面。前两者与传统的固态照明光源的散热通道相比,减少了散热环节。由于芯片直接焊装在金属基板上,散热效率更高,芯片到金属散热板减少了封装基板环节,同时根据LED芯片的功率,可加大或缩小散热板的宽度和厚度,使热参数匹配。

LED多芯片串接封装是趋势,在串接数量和方式上要仔细考量。从上面的分析可以看出,设计AC LED成本和点亮效果上并不合适,不能成为主流方式,既然认为多芯片串接是趋势,那肯定是DC驱动方式。多芯片串接需要LED晶圆级支持,过多的金线连接光效和生产上都是障碍。多芯片封装晶圆级串接再加上COB结合,是最优化的方式。晶圆级串接最好在10pcs以内,再结合COB金线连接。这样COB方式多芯片组分散式散热,会大大降低对封装基板的要求。散热热阻降低,LED结温度因此降低。同时提高大数量的LED晶圆级串接良率。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。