多圈线绕和精密电位器特点

发布时间:2020-10-16 阅读量:1570 来源: 我爱方案网 作者: 我爱方案网

多圈线绕电位器是一种电阻丝在环状骨架上绕制成,可以通过多圈转动的机械角度来使阻值变化的电位器。多圈线绕电位器能进行精密的调整,旋转角度与输出电阻的规律有直线式、指数式和对数式三种。


多圈线绕和精密电位器特点.png


直线式电位器的旋转角度与输出电阻成线性关系如A线,在限流、分压、定时、阻抗匹配等场合应用较多。指数式电位器的旋转角度与输出电阻成指数关系(B),先细挑后粗调,如音量调节电位器。对数式电位器的旋转角度与输出电阻成对数关系,与指数电位器相反(C),先粗调后细调,如对比度调节电位器。

 

多圈线绕电位器的参数。额定功率:多圈线绕电位器两个固定端上允许耗散的最大功率为多圈线绕电位器的额定功率。标称阻值:标在产品上的名义阻值,其系列与电阻的系列类似。允许误差等级:实测阻值与标称阻值的误差范围,根据不同精度等级可允许±20、±10、±5、±2、±1的误差,多圈线绕电位器的精度可达±0.1。阻值变化规律:指阻值岁划片的触点选装角度之间的变化关系。多圈线绕电位器具有高精度、稳定性好、温度系数小,接触可靠等优点,并且耐高温,功率负荷能力强。缺点是阻值范围不够宽、高频性能差、分辨力不高,而且高阻值的线绕电位器易断线、体积较大、售价较高。

 

精密电位器安装。精密电位器安装采用支架固定的方式,然后将随动轴与被测移动物体相连。精密电位器是以本身的安装凸台定位,用螺钉固紧在金属板上,然后将随动轴与旋转体中心衔接。精密电位器的输入与输出均为模拟量的直流电压信号,并且其输出电压的大小是由输入电压的大小来决议(如:输入5V,其整个量程的输出即为:0-5V;输入10V,其整个量程的输出即为:0-10V,以此类推)。客户若需求电流输,可以加配公司开发的位移电流转换器。

 

精密电位器使用需要注意,精密电位器在放置存放时,不能太过紧的去挤压存放,以免导致精密电位器的调节杆脱落。同时对于其的存放环境也得注意,不能存放于太过于潮湿的地方,以免致使电位器的内部元件受潮。在精密电位器的使用当中,相对于它的调节力度不要太用力去操作,否者一来有可能会致使精密电位器的调节杆损坏或者是脱落出来等问题,二来有可能会在电位器的调节上造成关不死或者是卡死等现象。关于电位器的阻值不要随便去调动,否者以免是会在电位器使用上导致阻值偏差过大,从而造成线路电流过大而损坏电位器。


多圈线绕和精密电位器特点1.png


精密电位器的作用。在高频信号下,充当电感或电容。(与外部电路特性有关)电感用,主要是处置EMC问题。匹配电路参数不肯定的时,以0ohm替代,理论调试的时,确认参数,再以细致数值的元件替代。在布线时,假设真实布不过去了,也可以加一个0ohm的电阻(觉得应该是用直插的,不应该是表贴的。测某部分电路的耗电流时,可以去掉0ohm电阻,接上电流表以便测耗电流。电路中没有任何功用,只是在PCB上为了调试便当或兼容设计等缘由。做跳线用,假设某段线路不用,直接补贴该电阻即可。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。