机电一体化五要素及永磁电机

发布时间:2020-11-5 阅读量:1142 来源: 我爱方案网 作者: 我爱方案网

机电一体化技术是在微型计算机为代表的微电子技术、从系统理论出发,根据系统功能目标和优化组织结构目标,对各组成要素及其间的信息处理,接口耦合,运动传递,物质运动,能量变换进行研究,使得整个系统有机结合与综合集成。


图片3.png


五大组成要素。一个机电一体化系统中一般由结构组成要素、动力组成要素、运动组成要素、感知组成要素、智能组成要素五大组成要素有机结合而成。机械本体(结构组成要素)是系统的所有功能要素的机械支持结构,一般包括有机身、框架、支撑、联接等。动力驱动部分(动力组成要素)依据系统控制要求,为系统提供能量和动力以使系统正常运行。


测试传感部分(感知组成要素)对系统的运行所需要的本身和外部环境的各种参数和状态进行检测,并变成可识别的信号,传输给信息处理单元,经过分析、处理后产生相应的控制信息。控制及信息处理部分(职能组成要素)将来之测试传感部分的信息及外部直接输入的指令进行集中、存储、分析、加工处理后,按照信息处理结果和规定的程序与节奏发出相应的指令,控制整个系统有目的的运行。执行机构(运动组成要素)根据控制及信息处理部分发出的指令,完成规定的动作和功能。


常规磁体结构的空心杯型定子高速永磁无刷直流电机的气隙磁通密度较低,采用新型磁体结构能够大幅度提高气隙磁通密度。该磁体结构具有磁屏蔽、正弦性气隙磁通密度分布的特点,特别适合于空心杯型定子高速永磁无刷直流电机。在设计高速高效永磁无刷直流电机时,其电磁设计可遵循下面的原则:


径向充磁的常规磁体结构电机与平行充磁的常规磁体结构电机相比,前者具有小的气隙磁通、大的转子轭部磁通,因此,对6极及以上极数的常规磁体结构电机来说,应采用平行充磁。磁体结构电机气隙磁通密度的正弦性远比常规磁体结构电机好,每极磁体块数越多,气隙磁通密度的正弦分布性越好。磁体结构电机的转子轭部磁通密度很小,远低于常规磁体结构电机,因此磁体结构电机可省却导磁转子铁心;但常规磁体结构电机,如果转子轭部不导磁,则电机气隙磁通密度将显著降低。因此,若转子无导磁铁心,则电机应采用磁体结构,以保证电机的气隙磁通密度,从而保证电机的功率密度和转矩密度。


图片4.png


对无定子导磁铁心电机,无论采用磁体结构还是常规磁体结构,电机的永磁磁场都有一定的辐射范围,因此为防止电磁干扰,应保证电机总有效气隙大于6倍的永磁体厚度。此范围以外的磁通密度将会很小,不会产生电磁干扰和铁耗。在永磁体厚度较小时,磁体结构提供的气隙磁通密度低于常规磁体结构;而当永磁体厚度增加到一定值时,磁体结构所提供的气隙磁通密度要高于常规磁体结构电机。因此,对无定子铁心电机来说应采用磁体结构,并尽可能增加磁体厚度,以提高气隙磁通密度,从而保证电机具有相当的功率密度和转矩密度。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。