发布时间:2020-11-30 阅读量:2210 来源: 我爱方案网 作者: 刘工程师
【编者按】感谢阅读本文,作者将从TTL与CMOS电平进行讲解,从电平规范、应用说明、电平转换详细讲解。主要是从TTL电平和CMOS电平两大方面讲述,作者拥有10年的单片机经验,通过实践将知识提供给需要的工程师,让更多的工程师从中所学,从中受益。
一、电平规范
1、名称解释
Uoh -> 输出高电平,Uol -> 输出低电平;
Uih -> 输入高电平,Uil -> 输入低电平。
2、TTL电平
TTL集成电路主要由BJT晶体管构成,如STC单片机,电平规范如下:
输出模式: Uoh ≥ 2.4V,Uol≤0.4V;
输入模式: Uih ≥ 2.0V,Uil≤0.8V;
3、CMOS电平
CMOS集成电路主要由MOS管构成,如STM32单片机,电平规范如下:
输出模式: Uoh ≈ VCC,Uol≈GND;
输入模式: Uih ≥ 0.7*VCC,Uil≤0.2*VCC;
二、应用说明
1、3.3V/5V TTL 驱动 3.3V CMOS,可以直接驱动;
2、3.3V/5V TTL 驱动 5V CMOS,高电平输出大于2.4V,如果落在2.4V至3.5V之间,CMOS电路不能检测到高电平,需要进行电平转换;
3、3.3V/5V CMOS 驱动 3.3V/5V TTL,可以直接驱动;
4、3.3V CMOS 驱动 5V CMOS,高电平输出3.3V, CMOS电路不能检测到高电平,需要进行电平转换,如果是其它电平,请参考TTL与CMOS电平规范判断是否需要进行电平转换。
三、电平转换
利用TTL晶体管的OC门与上拉电阻实现电平转换。
OC门:BJT晶体管的集电极开漏输出。
1、3.3V to 5V
说明:R1与Q1组成OC门,配合R2上拉至5V,实现电平转换。Tx输出0V,Q1导通,Rx端为0.3V左右;Tx输出3.3V,Q1截止,RX端为5V,完成电平转换功能。
2、5V to 3.3V
说明:R3与Q2组成OC门,配合R5上拉至3.3V,实现电平转换。Tx输出0V,Q1导通,Rx端为0.3V左右;Tx输出5V,Q1截止,RX端为3.3V,完成电平转换功能。
四、小结
TTL与CMOS电平是集成电路常用的电平,应用时需要根据电平规范进行匹配与转换。
TTL与CMOS电平涉及的知识点很多,本文只是简要的介绍了下,仅仅起到抛砖引玉的作用,日后设计过程中,需要不断的总结经验,沟通交流,以达到真正的理解,灵活运用。
作者介绍:刘工程师(笔名),在软硬件技术上有10年的经验,在单片机的经验更是突出,解决过多个单片机难题,可接单片机和软件开发等项目。目前在开讲单片机的教学,教程会在我爱方案网更新,敬请期待!公众号【硬件家园 】
版权声明:本文为博主原创,未经本人允许,禁止转载!
在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。
在电子设备中,CMOS有源晶振作为核心时钟源,其供电电压与输出特性直接影响系统稳定性。然而,高频方波信号的测量常因工具选择不当而产生误差:传统万用表的交流档基于正弦波有效值校准,测量方波时误差可达40%以上,而示波器通过直接捕获峰峰值(Vpp)和频域特性,可精准反映晶振的幅值、占空比及起振状态。本文将从有源晶振的电压特性(如YSO110TR系列兼容1.8-3.3V宽压供电)切入,解析万用表直流档的半压测量原理(3.3V供电时显示约1.65V),并对比示波器在探测CMOS方波时的关键技术参数(如探头衰减档位选择与接地优化),为工程师提供兼具理论基础与实践价值的测量方案参考。
加速度灵敏度是晶体振荡器对任何方向施加的外力的固有灵敏度。石英振荡器确实提供了我们所有人每天都依赖的电子设备的心跳。石英的有用之处在于,如果施加电压,石英将开始振动。不利的一面是,如果施加振动,石英会产生电压。该电压显示为相位噪声,并且是真正的阻力。
在很多电路中,系统晶振时钟频率很高,干扰谐波出来的能量也强,谐波除了会从输入与输出两条线导出来外,也会从空间辐射出来,这也导致若PCB中对晶振的布局不够合理,会很容易造成很强的杂散辐射问题,并且一旦产生,很难再通过其他方法来解决,所以在PCB板布局时对晶振和CLK信号线布局非常重要。
为落实中美经贸高层会谈的重要共识,自2025年5月14日12时01分起,调整对原产于美国的进口商品加征关税措施。由34%调整为10%,在90天内暂停实施24%的对美加征关税税率。这一政策调整旨在缓和贸易摩擦,促进双边经贸合作,但也进一步凸显了供应链自主可控的重要性。才能在激烈的市场竞争中脱颖而出,实现可持续发展。YXC晶振断凭借优异的成本资源及质量,与国外逐渐缩小差距,并在市场上获得大众认可。