发布时间:2020-12-1 阅读量:1804 来源: 我爱方案网 作者: 我爱方案网
压电陶瓷片一般作为报警声或者音乐的发声元件,当有电压信号通入压电陶瓷后会产生相应的震动,从而把电信号转换成声音信号。同样,当压电陶瓷受到外部震动时,也会将机械震动转换成电压信号,这就是压电陶瓷片作为震动传感器的工作原理。

压电陶瓷片由于受外界震动时的形变及输出电压信号比较微弱,所以这种元件当做震动开关使用时其灵敏度较低。机械类的震动开关输出的只是开关量的变化,对于震动的强度及角度等具体参数是不能体现的。而且这类的震动开关灵敏度是有限的。对于灵敏度要求较高或者需要采集具体参数值的电路中,一般会采用电子式的震动开关。严格意义上讲,这类传感器不仅作为震动传感器使用,比如常用的3D加速度芯片、角度传感器芯片等,其能够输出比较精确的参数值供电路进行采集。
空开与熔断器的区别。熔断器属于一次失效器件;空开属于多次失效器件,可以多次重复使用。熔断器的电流分断能力比空开高;空开有时会出现断路动作失败。因为有这样一种情况:当电流突然增大到一定值时,空开内部接触点。空开内部的接触点接触不良,可能会引起打火现象,使接触点氧化,增加接触电阻,严重的可能使空开因发热导致接触点焊死失效,而熔丝无此问题。
漏电保护器。漏电电流动作保护器简称漏电保护器,又叫漏电保护开关。设备发生漏电故障时以及对有致命危险的人身触电进行保护。主要四部分:1.检测元件:零序电流互感器,被保护的相线、中性线穿过环形铁心,构成一次线圈N1,缠绕绕组构成二次线圈N2。没有漏电,电流向量和等于零,因此在N2上也不能产生相应的感应电动势。漏电,相线、中性线的电流向量和不等于零,产生感应电动势,中间环节进行信号处理。中间环节:中间环节通常包括放大器、比较器、脱扣器,中间环节的作用是对漏电信号进行放大和处理,并输出到执行机构。执行机构:接收指令信号,实施动作,自动切断故障处的电源。试验装置:定期检查其是否完好、可靠,试验装置就是通过试验按钮和限流电阻的串联,模拟漏电路径,以检查装置能否正常动作。
一般环境选择动作电流不超过30mA,动作时间不超过0.1s.,这两个参数保证了人体如果触电时,不会使触电者产生病理性生理危险效应。在浴室、游泳池等场所漏电保护器的额定动作电流不宜超过10mA。在触电后可能导致二次事故的场合,应选用额定动作电流为6mA的漏电保护器。

当无漏电流或漏电流达不到动作电流时,零序电流以感应出的电压不足以触发可控硅G极(控制极),此时A极(阳极)与K极(阴极)之间相当于一个大电阻达1M(1M=1000000欧姆)以上,脱扣器线圈一般为几十欧姆(30-60欧姆左右),脱扣器线圈与可控硅等效于串联状态。由于可控硅的等效电阻远远大于脱扣器线圈的电阻值,因此几乎全部电压加在可控硅的A与K两端,脱扣器同乎无压降,微小的电压不能带动脱扣器工作,因此保护器处于守侯状态,断路器处于正常合闸状态。当零序电流互感器感应出的电压能触发可控硅G极时,此时A与K两端完全导通,电阻几乎为0,全部压降加在脱扣线圈两端,脱扣器线圈产生足够大的吸力,带动脱扣机构动作,从而切断电源,实现自我保护。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。