发布时间:2020-12-4 阅读量:1364 来源: 我爱方案网 作者: 我爱方案网
气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息的装置。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理仪表显示部分。

气体传感器读数准确性受以下几个因素影响:气体浓度。对于电化学传感器来说,其输出电流随被测气体浓度呈线性变化,一旦被测气体浓度发生变化,传感器输出信号也便随之发生变化。例如苯标气,当使用苯传感器进行测试时,经常遇到检测不到苯气体的信号,或者信号很小。这是由于苯气体相比于空气密度较大,因此在钢瓶中易出现苯气体下沉现象,导致传感器检测时无信号输出,抑或输出信号很小。
平衡气。据统计,电化学传感器有20多种,绝大多数毒气是还原性的气体,然而还原性气体被氧化时需要氧气参与,包括CO、H2S、SO2、NH3、PH3等等。在测试此类气体时,如果氧气供应不足,很容易影响传感器信号输出,常见的现象即是灵敏度偏低,抑或输出信号先升高后降低。因此,在使用电化学传感器测试还原性气体时,尽可能采用空气平衡气体。
压力变化对传感器的影响假如压力变更激烈(如通过气塞时),气体检测仪传感器读数能够呈现临时性的起伏不定,能够使探测器收回报警。当氧气体积百分比稳固保持在20.8%左右,而且全部压力降低幅度很大,则环境中供呼吸用的氧气能够会成为形成风险。
湿度变化对传感器的影响如湿度变化明显(如从带空气调节的干燥环境进入室外潮湿空气环境时),则空气中的水蒸气会驱赶氧气,导致氧气读数可能造成跌落最多达0.5%。气体检测仪传感器配有专门过滤片,以消除湿度变化对气体读数的影响。这种影响不会被立刻发现,但是经过数小时会慢慢影响氧气的度数。温度变化对传感器的影响传感器带温度补偿。尽管如此,如温度波动剧烈,气体检测仪传感器读数可能会出现漂移情况。应在工作现场校零仪器,以便最大限度减少温度变化对读数的影响。
老化时间。大多数气体传感器在使用前需要对其进行老化,电化学传感器更是如此。合适的老化时间可以使传感器具有稳定的输出。电化学传感器在运输过程中,或者在搁置期间,电极表面很容易吸附一些杂质,使得在刚通电时,传感器读数经常出现零点偏高,抑或输出值跳动等现象。此时如若进行测试气体,其得到的测试结果明显有误差。因此,对其进行合适的老化,可以得到稳定的输出,从而减小其对传感器读数的影响。

有害气体检测的气体传感器的一大作用,有害气体的检测有两个目的,第一是测爆,第二是测毒。所谓测爆是检测危险场所可燃气含量,超标报警,以避免爆炸事故的发生;测毒是检测危险场所有毒气体含量,超标报警,以避免工作人员中毒。有害气体有三种情况第一、无毒或低毒可燃,第二、不燃有毒,第三、可燃有毒。针对这三种不同的情况,一般我们选择传感器需要选择不同的气体传感器。例如测爆选择可燃气体检测报警仪,测毒选择有毒气体检测报警仪等。其次我们需要选择气体传感器的类型,一般有固定式和便携式。生产或贮存岗位长期运行的泄漏检测选用固定式气体传感器;其他象检修检测、应急检测、进入检测和巡回检测等选用便携式气体传感器。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。