电磁流量计和栅压供电特点

发布时间:2020-12-10 阅读量:1776 来源: 我爱方案网 作者: 我爱方案网

电磁流量计测量原理是基于法拉第电磁感应定律。即:导电液体在磁场中作切割磁力线运动时,导体中产生感应电动势,其感应电势E为:E=KBV(—)D   K:仪表常数;  B:磁感应强度   V(—):测量管截面内的平均流速;  D:测量管的内径;   


image.png

 

测量流量时,流体流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速(即体积流量)成正比的电压,此电压通过两个与液体直接接触的电极检出,传至放大器,然后转换成统一的输出信号。这种测量方式具有以下特点:

 

测量管内无阻流体,因此无压力损失; 由于信号在整个充满磁场的空间中形成,它是管道截面上的平均值,因此所需直管段相对较短,前端长度为5(DN为流量计通径);只有管道衬里和电极与被测液体接触,因此,合理选择电极和衬里材料,即可达到耐腐蚀、耐磨损的要求;测量所得信号是一个与平均流速成线性关系的电动势,它与液体的压力、温度、密度、粘度、电导率(不小于最低电导率)等物理参数无关,所以测量精度高,工作可靠。

 

在电磁流量计的选型时,要注意以下几点:实际最高工作压力必须小于电磁流量计的额定工作压力;最低工作温度和最高工作温度必须符合流量计量规定的温度要求(详见内衬材料表);从经济性考虑,可以选择适当流速所对应的口径的电磁流量计,相对减少投资(见流量范围表);根据测量目的、功能来合理选择相应的精度等级;根据介质的腐蚀性来选择电磁流量计的电极材料;根据介质的腐蚀性、磨损性、和温度来选择流量的内衬材料;根据安装场合的要求及环境,来合理选择使用一体型电磁流量计还是分体型电磁流量计。

 

image.png


自给栅负压供电方式是功率放大器中最常用的方法。其工作原理是利用屏流在阴极电阻Rk上产生电压降,使阴极产生Uk=Ia·Rk的对地为正极性的电压。而栅极通过栅漏电阻Rg接地,其对地电位为零。这样,栅极电压相对阴极来说为负极性,形成栅负压。当电子管工作于甲类放大时,虽然屏流的直流成分是稳定的,但随着输入信号的变化,屏流中交流成分每个瞬时值都是变化的,阴极电阻Rk上的压降也随着变化形成电流负反馈。为了避免这种现象产生,一般在Rk两端并联一个大容量的电容,使交流成分“短路·。图1中影响栅负压的Ck元件的容抗Xc=0.2Rk.当Ck容量,100uF时,可采用几只电容并联,或在Ck上并联0.1uF"0.47uF小电容,使其频响得以改善。自给栅偏压的优点除电路简单、输入阻抗高、频率特性较好以外,还具有自我保护的能力。由于某些原因使屏流增大时,阴极电阻的电压降也增大,造成栅负压的增加,栅负压的增加将使屏流减小,从而保护电子管不致损坏。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。