空载的情况下,稳压器能稳定工作吗?

发布时间:2020-12-21 阅读量:1936 来源: 我爱方案网 作者: ADI

作为一名应用工程师,经常被问及有关稳压器空载工作的问题。大多数现代LDO和开关稳压器均能在空载的情况下稳定工作,那么,人们为什么还要再三询问呢?


一些老式的功率器件要求具有最小的负载以保证稳定性,因为其中一个必须得到补偿的电极受有效负载电阻的影响。例如,图A显示,LM1117至少需要1.7mA的负载电流(最大5mA)。


11.jpg

图A.LM1117最小负载电流规格。


大多数新型器件均能在无负载的情况下工作,对于这一规则,极少有例外情况。一些设计技术使得LDO在使用任何输出电容(尤其是低ESR电容)的情况下都能保持稳定状态,它们也用于保障器件在无负载情况下的稳定性。对于少数需要负载的现代器件,这一限制一般是通过旁路元件的漏电流造成的,而不是稳定性原因造成的。那么,您如何辨别呢?请参阅数据手册。如果器件需要最小负载,数据手册必定会提供一些信息。


ADP1740和其他低电压、高电流LDO都属于这一类。在最糟糕的情况下,集成电源开关产生的漏电流大约是100μA(85°C)和500μA(125°C)。在无负载的情况下,漏电流会对输出电容充电,直到开关的VDS低到足以将漏电流减小至可以忽略不计的水平,同时增加空载输出电压。数据手册指出,至少需要500μA的负载,因此,如果器件要在高温下工作,则建议使用仿真负载。该负载小于设备的额定值2A。图B显示了ADP1740数据手册中列出的最小负载电流规格。


12.jpg

图B.ADP1740最小负载电流规格


如果数据手册中未明确指出最小负载,该怎么办?在大多数情况下,是不需要最小负载的。虽然听起来可能不太令人信服,但是,如果需要最小负载,数据手册中肯定会提供此类信息。然而,困惑往往随之而来,因为数据手册中通常使用图表来显示某个工作范围的规格。大多数这些图表采用对数形式,这使得它们可以显示数十年的负载范围,但是,对数刻度不能变为零。


图C显示了ADM7160在10μA到200mA范围内的输出电压以及接地电流和负载电流。其他图表,例如接地电流与输入电压,显示了多个负载电流时的测量结果,但并未显示电流为零时的数据。


13.png

14.png

图C.ADM7160输出电压

以及接地电流和负载电流。


此外,PSRR、电源电压调整率、负载调整、噪声等参数指定了某个不包括零的负载电流范围,如图D所示。但是,这绝不意味着需要最小负载。


15.jpg

图D.ADM7160负载调整。


您如果使用具有省电模式(PSM)的开关稳压器,则往往会担心稳压器在轻负载时的工作情况,因为PSM会减少工作频率、跳脉、提供脉冲群或出现这些情况的某种组合。在轻负载的情况下,PSM会减少功耗,提高效率。其缺点在于输出纹波会显著增加,但是,器件仍可保持稳定状态,并且可以在空载时轻松工作。


如图E中所示,当负载在800mA与1mA之间切换时,ADP2370高电压、低静态电流降压稳压器因PSM工作产生了更多的纹波。测试是在1mA时完成的这一事实并不代表1mA就是最小负载。


16.png

图E.省电模式下的ADP2370负载瞬态。


图F显示了随负载电流变化的纹波电压。在该例中,图中所示的纹波电压一直降到零,表明负载可以为零,并且空载时的噪声不会比电流为1mA或10mA时的噪声更糟糕。


17.png

图F.ADP2370输出纹波与负载电流。


结论


大多数现代稳压器均能在零负载电流的情况下稳定地工作,若存有疑问,可参考数据手册。尽管如此,仍要注意。对数图表无法归零,且测试并非总是在零负载电流的情况下进行,因此,尽管未显示空载数据,您也不应推断出稳压器无法在空载情况下正常工作。使用开关稳压器时,在省电模式下出现纹波是正常的,并非意味着不稳定。


相关资讯
革新辅助电源设计:1700V SiC MOSFET赋能20-200W高效系统​

在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。

安森美Hyperlux SG:攻克全局快门三大痛点 (高性能、高效率、低功耗)​

在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。

常关型SiC Combo JFET结构

安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。

920nm问世+低红曝优选:IR:6技术精准匹配多元红外应用场景

IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。

工业电动化浪潮:充电器设计的效率与尺寸挑战

工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。