发布时间:2021-08-16 阅读量:2103 来源: 我爱方案网 作者: 雕塑者
MOS管规格书中有三个寄生电容参数,分别是:输入电容Ciss、输出电容Coss、反向传输电容Crss。该三个电容参数具体到管子的本体中,分别代表什么?是如何形成的?
功率半导体的核心是PN结,从二极管、三极管到场效应管,都是根据PN结特性所做的各种应用。场效应管分为结型、绝缘栅型,其中绝缘栅型也称MOS管(MetalOxideSemiconductor)。
根据不通电情况下反型层是否存在,MOS管可分为增强型、耗尽型——
寄生电容形成的原因
1.势垒电容:功率半导体中,当N型和P型半导体结合后,由于浓度差导致N型半导体的电子会有部分扩散到P型半导体的空穴中,因此在结合面处的两侧会形成空间电荷区(该空间电荷区形成的电场会阻值扩散运动进行,最终使扩散运动达到平衡);
2.扩散电容:当外加正向电压时,靠近耗尽层交界面的非平衡少子浓度高,远离非平衡少子浓度低,且浓度自高到底逐渐衰减直到0。当外加正向电压增大时,非平衡少子的浓度增大且浓度梯度也增大,外加电压减小时,变化相反。该现象中电荷积累和释放的过程与电容器充放电过程相同,称为扩散电容。
MOS管寄生电容结构如下,其中,多晶硅宽度、沟道与沟槽宽度、G极氧化层厚度、PN结掺杂轮廓等都是影响寄生电容的因素。
对于MOS管规格书中三个电容参数的定义,
输入电容Ciss=Cgs+Cgd;
输出电容Coss=Cds+Cgd;
反向传输电容Crss=Cgd。
这三个电容几乎不受温度变化的影响,因此,驱动电压、开关频率会比较明显地影响MOS管的开关特性,而温度的影响却比较小。
作者介绍:雕塑者(笔名),一名乐于开源文化的工程师,个人公众号【硬件大熊】。后续原创技术应用笔记还将在我爱方案网上线,敬请期待!
来源:我爱方案网
版权声明:本文为博主原创,未经本人允许,禁止转载。
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。
IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。
工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。