发布时间:2021-08-17 阅读量:3429 来源: 我爱方案网 作者: 我爱方案网整理
在LED全彩显示屏的工作当中,驱动IC的作用是接收符合协议规定的显示数据(来自接收卡或者视频处理器等信息源),在内部生产PWM与电流时间变化,输出与亮度灰度刷新等相关的PWM电流来点亮LED。驱动IC和逻辑IC以及MOS开关组成的周边IC,共同作用于LED显示屏的显示功能并决定其呈现的显示效果。
LED驱动芯片可分为通用芯片和专用芯片两种
所谓的通用芯片,其芯片本身并非专门为LED而设计,而是一些具有LED显示屏部分逻辑功能的逻辑芯片(如串2并移位寄存器)。
而专用芯片是指按照LED发光特性而设计专门用于LED显示屏的驱动芯片。LED是电流特性器件,即在饱和导通的前提下,其亮度随着电流的变化而变化,而不是靠调节其两端的电压而变化。因此专用芯片一个最大的特点就是提供恒流源。恒流源可以保证LED的稳定驱动,消除LED的闪烁现象,是LED显示屏显示高品质画面的前提。有些专用芯片还针对不同行业的要求增加了一些特殊的功能,如具备LED错误侦测、电流增益控制和电流校正等。
驱动IC的演进
上个世纪90年代,LED显示屏应用以单双色为主,采用的是恒压驱动IC。1997年,我国出现了首款LED显示屏专用驱动控制芯片9701,从16级灰度跨越至8192级灰度,实现了视频的所见即所得。随后,针对LED发光特性,恒流驱动成为全彩LED显示屏驱动的首选,同时集成度更高的16通道驱动替代了8通道驱动。20世纪90年代末,日本Toshiba、美国Allegro和Ti等公司相继推出16通道的LED恒流驱动芯片,21世纪初,中国台系企业的驱动芯片也相继量产和使用。如今,为了解决小间距LED显示屏PCB布线的问题,一些驱动IC厂家又推出了高集成的48通道的LED恒流驱动芯片。

驱动IC的性能指标
1、节能:
作为绿色能源,节能是LED显示屏永恒的追求,也是考量驱动IC性能的一个重要标准。驱动IC的节能主要包括两个方面,一是有效降低恒流拐点电压,进而将传统的5V电源降低至3.8V以下操作;二是通过优化IC算法和设计降低驱动IC操作电压与操作电流。目前已经有厂家推出了具有0.2V低转折电压,提升达15%以上的LED利用率的恒流驱动IC,使用较常规产品低16%的供电电压减少发热量,让LED显示屏能效大为提升。
2、集成化:
随着LED显示屏像素间距的迅速下降,单位面积上要贴装的封装器件以几何倍数增长,大大增加模组驱动面的元器件密度。以P1.9小间距LED为例,15扫的160*90模组需要180个恒流驱动IC,45个行管,2个138。如此多的器件,让PCB可用的布线空间变得极为拥挤,加大了电路设计的难度。同时,如此拥挤元器件的排列,极易造成焊接不良等问题,同时也降低了模组的可靠性。驱动IC更少的用量,PCB更大的布线面积,来自应用端的需求倒逼驱动IC必须走上了高集成的技术路线。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。