三款采样保持电路设计原理图详解

发布时间:2021-09-1 阅读量:1393 来源: 我爱方案网 作者: 我爱方案网整理

采样保持电路(采样/保持器)又称为采样保持放大器。当对模拟信号进行A/D转换时,需要一定的转换时间,在这个转换时间内,模拟信号要保持基本不变,这样才能保证转换精度。采样保持电路即为实现这种功能的电路。


采样保持电路图设计(一)


采样保持放大器SMP04用做多路输出选择器电路图


如图所示为SMP04用做多路输出选择器,与解码器、D/A转换器构成的四路数字-模拟转换电路。数字信号输入模数转换器DAC8228,输出产生5~10V模拟电压送副SMP04,地址输入通道解码器,不同的地址解码后分别控制四路开关,以分别输出四模拟信号。采用DAC8228产生DAC电压输出可以使电路得以最大的简化。为了将输出电压干扰减小到最小,在采样信号被确认之前,必须保证有5μs的最后电压建立时间。每一个采样保持放大器必须在每一秒钟或更低时问刷新一次,以确保输出电压下降率不超过10mV或1/2LSB(最小有效位)。


12.png


采样保持电路图设计(二)


如图所示为由SMP04与运放构成的增益为10的采样保持放大电路。电路中将SMP04置于运放OP490的反馈回路中,当S非/H=0时,SMP04内部开关闭合,运放OP490的反馈回路接通,电路增益由运放本身及反馈电阻决定,图中增益设置为10,输出端输出放大后的采样电压。当S非/H=1时,SMP04内部开关断开,运放OP490反馈回路也无法形成,输出端输出保持在内部保持电容上最近一次的采样电压,且不受输入端信号影响。运放输出端的两个二极管1N914起钳位作用,防止当SMP04保持状态时造成运放饱和。


13.png


采样保持电路图设计(三)


lf398峰值采样保持电路


1.lf398的峰值保持电路


14.png

图1:峰值保持电路原理图


峰值保持电路探测核脉冲幅度信号并在脉冲峰值时刻通知保持峰值,同时向单片机提出中断申请信号,使单片机响应中断启动A/D转换;转换结束后单片机使采样保持器复原为采样状况,实现系统的逻辑控制。峰值保持电路原理图如图1所示。U4是芯片LF398,它是美国国家半导体公司研制的集成采样保持器。它只需外接一个保持电容就能完成采样保持功能,其采样保持控制端可直接接于TTL,CMOS逻辑电平。


15.png

图2


U1和U2是比较器LM311,U3是D触发器74LS74,U5A是与门74LS08。放大后的脉冲核信号一路输入到下阈比较器,另一路接输入到LF398。当核信号大于下阈时,比较器U1输出高电平,得到上升沿,上升沿再触发U3A,它的Q端输出高电平和U3B的Q非端相与得到高电平,去控制LF398的采样控制端进入采样状态。当LF398的输出端信号幅度比输入端大时,即到达峰值时,比较器U2出高电平,得到上升沿,上升沿再触发U3B,它的Q非端输出低电平,U5A输出变为低电平,LF398进入保持状态。U3B的Q非端输出的下跳沿作为单片机的中断信号,当A/D转换结束后,单片输出放电和清零CLR信号使采样保持器复原。电路波形见图2。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。