发布时间:2021-09-10 阅读量:1849 来源: 我爱方案网 作者: 我爱方案网整理
射频前端模块(RFFEM:Radio Frequency Front End Module)是手机通信系统的核心组件,对它的理解要从两方面考虑:一是必要性,是连接通信收发芯片(transceiver)和天线的必经通路;二是重要性,它的性能直接决定了移动终端可以支持的通信模式,以及接收信号强度、通话稳定性、发射功率等重要性能指标,直接影响终端用户体验。如图1所示,射频前端芯片包括功率放大器(PA:Power Amplifier),天线开关(Switch)、滤波器(Filter)、双工器(Duplexer和Diplexer)和低噪声放大器(LNA:Low Noise Amplifier)等。

简述PA、Switch、Filter、Duplexer和Diplexer1、功率放大器(PA)2、滤波器(Filter)/双工器(Duplexer)RF滤波器包括了SAW(声表面滤波器)、BAW(体声波滤波器)、MEMS滤波器、IPD(Integrated Passive Devices)等,而双工器是包含Rx和Tx滤波器。SAW、BAW滤波器的性能(插入损耗低、Q 值高)是目前手机应用的主流滤波器。SAW 使用上限频率为2.5GHz~3GHz,BAW使用频率在 2.0GHz 以上。

从“五模十七频”说起,回溯2G到4G手机频段发展在4G普及的过程中,“五模十三频”、“五模十七频”等概念成为高端手机芯片的重要标志,也成为手机厂商重要的宣传热点。这并非是简单的营销噱头,而体现了智能手机兼容不同通信制式的能力,是手机通信性能的核心竞争力指标。
图5是3G手机(WCDMA)的典型射频前端解决方案,主要的射频前端芯片在2G方案的基础上,增加了2组PA Module和4组双工器(Duplexer)。图6是4G LTE手机典型射频前端解决方案,支持“五模十二频”,可以看到,在4G时代,射频前端芯片不仅在数量上产生指数级增长,在设计复杂度上更是大大提高。主要的射频前端芯片有:1个集成频段选择开关的多模功率放大器(MMPA),4个PA Module,3个Duplexer/Multiplexer,6个接收/发射Filter,1个用于TD-LTE模式的S1P2开关,分别用于高频、低频和分集电路的3个天线开关模块,1个接收分集滤波器。

表1整理了2G至4G射频前端解决方案中器件的数量,可以看到,4G方案的射频前端芯片数量相比2G方案和3G方案有了明显的增长。印证了我们对手机射频前端芯片的数量随着支持频段数量的增加而指数级递增的推论。

从更为直观的角度观察,图7给出了手机射频前端模块从2G到4G演进过程中价格和出货量的变化数据。目前,高端4G智能手机中射频前端模块的价格合计已经达到16.25美元,中高端4G产品也有7.25美元。相比2G手机的0.80美元和3G手机的3.25美元,射频前端模块的单位产值有了几倍、几十倍的提高,并且,随着4G通信网络渗透率的不断提高,高端4G手机的出货量依然在不断攀升中。

推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。