发布时间:2021-09-13 阅读量:1948 来源: 我爱方案网 作者: 我爱方案网整理
系统工作于BD2-B1和GPS-L1两个频点,便携性好,界面直观,可通过按键或触摸屏两种方式操作,同时可随时采集户外复杂环境下的导航卫星信号,极大地提高了导航接收机的开发效率和质量。
1 系统结构
本系统整体分为射频模块与基带模块两大部分。其中,射频模块负责接收和发送射频信号,并将射频信号转换为基带信号后交由基带模块处理;基带模块完成用户交互、接口对接等功能。此外还包括SSD硬盘(数据存储的介质,存放采集和回放的数据)以及对外各种接口。系统的结构组成如图1所示。

2 系统硬件设计
2.1 射频模块
射频模块可分为上变频与下变频两大部分,下变频部分的核心器件采用MAX2769B芯片,该芯片是一款多模导航接收机芯片,适用于GPS/北斗/格洛纳斯/伽利略卫星导航定位系统。上变频部分的增益控制器件采用了HMC472LP4数控衰减芯片,该衰减芯片步进0.5 dB,最高衰减31.5 dB,分别由V1~V6 6个引脚控制,低电平有效。上下变频部分均采用C8051F230单片机进行配置,下变频部分采用GPIO口模拟SPI接口对MAX2769B芯片写配置字,配置相关参数;上变频模块通过控制12个GPIO口电平的高低配置增益。同时,射频模块的上下变频部分均采用杭州中科微电子的ATGM332D导航接收机作为监控接收机,上下变频模块分别将监控接收机接收的报文信息通过串口送入FPGA模块,由FPGA选择输出至ARM端。
2.2 基带模块
基带模块可以分为FPGA模块、ARM模块及基带底板3个部分。基带底板是各模块连接的桥梁,并完成除ARM、FPGA之外的所有功能,各模块均以接插件形式与底板连接。
2.2.1 FPGA模块
FPGA采用了Xilinx 的XC7K325TFFG900-2型FPGA(下文简称K7)。K7系列是Xilinx最新推出的面向中低端市场的低价位、高性能FPGA。K7核心板主要负责对接射频数据接口和高速收发接口,FPGA内部逻2.2.2 ARM模块
ARM模块采用Atmel SAMA5D31处理器,该处理器基于Cortex-A5架构,主频528 MHz,内部集成了浮点运算单元,是一款高性能、低功耗的嵌入式处理器。ARM模块集成了256 MB ROM、256 MB RAM,保证性能的同时降低了开发成本。对于本系统而言,选用该模块是考虑了性能、功耗、价位等多种综合因素的结果。
2.3 基带底板(电源与时钟)
本设计采用5 V~42 V宽压电源输入,根据各个器件工作时所需电流的大小,采用12 V/5 A适配器作为输入电源。
整个系统的时钟源有2个,均为16.368 MHz的有源晶振,分别位于基带底板(主时钟)、射频板(备用时钟)。正常情况下使用主时钟,在特殊应用下使用备用时钟。除16.368 MHz时钟外,ARM具有自身的无源晶振作为自己的时钟源。模块通信时均采用异步通信方式,以避免钟差产生的错误。
3 系统软件设计
3.1 FPGA程序设计
本系统在采集数据时,FPGA接收来自下变频模块的8位AD数字信号(L1+B1),经过处理后通过SATA接口存入到SSD硬盘中,完成数据的采集与存储;回放时,FPGA从SSD硬盘中读取数据,经过DA数模转换后,送入上变频模块完成信号的播发。在卫星信号采集回放时,FPGA要接收来自上下变频模块监控接收机的UART信息,确定采集和播发的信号是否正常。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。