发布时间:2021-09-24 阅读量:2425 来源: 我爱方案网 作者: 我爱方案网整理
人工神经网络ANN简称为神经网络或类神经网络。深度学习实际上是深度神经网络DNN,即深度学习从人工神经网络ANN模型发展起来的,因此有必要对人工神经网络ANN作进一步探讨。人工神经网络ANN的研究工作不断深入,已经取得了很大进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
那么究竟什么是人工神经网络ANN呢?
人工神经网络ANN从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。人工神经网络ANN是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点(神经元)代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

人工神经网络ANN的发展历程:
1) 人工神经网络ANN的概念由W.S.McCulloch和W.Pitts等人于1943年提出。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法。
2) 1960s年,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。1982年, J.J.Hopfield提出了Hopfield神经网格模型,引入“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,开创了神经网络用于联想记忆和优化计算的新途径。这项开拓性的研究工作有力地推动了神经网络的研究。
3) 1985年,有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。
4) 1986年进行认知微观结构地研究,提出了并行分布处理的理论。
5) 1986年,Rumelhart, Hinton, Williams发展了BP算法。迄今,BP算法已被用于解决大量实际问题。
6) 1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
7) 1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
8) 90年代初,Vapnik等提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
9) 美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。人工神经网络的研究从此受到了各个发达国家的重视。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。