发布时间:2021-11-22 阅读量:878 来源: Dialog半导体公司 发布人: lina
本文介绍了一个具有动态过流检测功能的智能门锁电机驱动集成电路(IC)设计方案,该设计可支持不同的电源电压和负载。
目前,大多数智能门锁使用电池供电。电池使用寿命通常约为6个月,最长可达一年。电池使用寿命的长短取决于所使用的无线技术(Wi-Fi、蓝牙、ZigBee)以及门锁开和关的频率。
本设计示例中的电机采用四节AA电池供电。
智能门锁制造商使用不同的方式来检测锁舌打开或关闭的完成状态:限位开关、固定在轴上的加速度计、霍尔传感器和齿轮上的磁铁组等。它们都需要相应的外部组件和电机驱动IC。
锁舌位置检测方案之一是测量电机电流,当锁舌锁定时关闭电机,同时电机电流也上升到定义的阈值(见图1)。这种方法不需要额外的组件。不过,门限值必须根据相对应的特定的电源电压来确定,通常是满电状态的电池电压。
图1:电机电流波形
该设计的一项改进之处是测量每个电机的均方根(RMS)电流,并设置不同的电流阈值用以补偿不同电池电压(参见图2)。本文介绍了如何为这种设计方案配置高压GreenPAK™ IC的内部逻辑资源。
图2:带补偿的电机电流波形
配置及运行原则
1.运行原则
该设计分为三个部分,如图3所示:
●电机堵转检测:如果电机启动100 ms后电机电流过高,电机驱控芯片关闭其内部机制,并测量修正电机电流。
●电流保护阈值设置:电流CMP的Vref(GreenPAK™ IC的内部逻辑资源)取决于电机工作电流(设置为高于测量值)。
●过流等待:如果在此期间电机工作电流高于所选值,则电机将被关闭。
图3:设计运行
2. HV GreenPAK内部资源配置/设计
图4:HV GreenPAK设计
使用了当前CMP的寄存器文件(RegFile)来测量电机电流。有16个值,它们从高到低切换(见图 5)。
图5:寄存器文件(RegFile)数据
250 ms后,寄存器文件会向上切换两个值(比如在250 ms之前达到Byte8的值,在250 ms后会切换到Byte10的值)以设置新的电流阈值,如图6所示。当电机电流增加到这个新的电流阈值时,该机制将关闭(见图7)。
图6:寄存器文件使用
图7:电机关闭过程
对于不同的电源电压和负载,电机电流会有所不同。对于更高的电机电流,“电机关闭保护电流水平”将会变得更高。
应用电路
图8:典型的应用电路
●PIN#2电机ON —> 上升沿打开电机
●PIN#3电机方向 —> 电机旋转方向:HIGH —> 正向旋转,LOW —> 反向旋转
●VDD范围:2.3 V – 5.5 V
●VDD2范围:3.6 V – 6.0 V
电机测试
表1:电机参数
电源电压为6.0 V时,电机启动电流峰值约为2A,200 ms后降低至标称值,具体值取决于电源电压(见图9-12)。
图9:电机启动电流波形,电源电压3.6 V
图10:电机空载电流,电源电压3.6 V
图11:电机启动电流波形,电源电压6.0 V
图12:电机空载电流,电源电压6.0 V
设计运行波形
正常运行
●电源电压:6.0 V
●电机均方根(RMS)电流:170 mA
●电机关闭保护电流:620 mA
图13:空载电机,电源电压6.0 V
●电源电压:3.6 V
●电机均方根(RMS)电流:127 mA
●电机关闭保护电流:460 mA
图14:空载电机,电源电压3.6 V
●电源电压:3.0 V
●电机均方根(RMS)电流:310 mA
●电机关闭保护电流:670 mA
图15:负载电机,电源电压3.0 V
启动时电机堵转
电机堵转检测时间为100 ms。如果在启动后100 ms内电机电流较高,则电机驱动将自动关闭。
图16:停转的电机,电源电压3.6 V – 6.0 V
总结
本文介绍了一个如何使用Dialog高压GreenPAK芯片的具体示例,阐述了针对特定电机和电池组的集成电路的定制设计。这是一项非常灵活的电机控制和驱动解决方案,使用了可配置的内部逻辑,支持设计人员的偏好。在GreenPAK芯片中集成了电机驱动意味着整个电路可以装入一个很小的物理空间。
当电机电流或电源电压发生变化时,设计人员可以对电路进行定制。GreenPAK芯片还可以用来设计恒流和恒压的电机驱控方案,并具有嵌入式保护功能,如过流、欠压、过温保护等。
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。
IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。
工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。