超高电阻、电阻率和绝缘材料的精确测量

发布时间:2021-11-24 阅读量:1508 来源: 是德科技KEYSIGHT 发布人: wenwei

【导读】橡胶、塑料、电木等,作为绝缘材料,在我们的电子和电力产品设计时必不可少。但不知您想过没有,您选择的材料的电阻性能到底怎么样,在各种工作场景或温度情况下,其电阻或电阻率有多大,是否能满足产品的设计要求?


如下表所示,金属和合金的电阻率都很小;而电木、橡胶的电阻率都很大。在供电、输电线路中,为了减小损耗,要选用铜、铝等低电阻率的材料制作导线;外层绝缘部分又要选用橡胶等高电阻率的材料。


几种常用材料20℃时的电阻率

1637741987588004.png


很多工程师,在验证材料的电阻特性时,可能首先会想到用数字万用表。但即便是我们最高性能的六位半数字万用表,其测量电阻的最高量程,只有1GΩ。但我们设计中采样的绝缘材料,随随便便都超高1GΩ!测量大电阻,为啥如此之难呢?


如何测量TΩ甚至PΩ的电阻呢?


肯定是利用欧姆定律


1637741967242454.png


电阻测量时,通常是用施加电流激励,测量电阻端的电压,按照欧姆定律就可以获得电阻值,如测量100KΩ的电阻,10uA电流激励下,测量1V电压。


但是,如果0.1TΩ的被测电阻,依然施加10uA电流,请问电压是多少伏呢?


10 uA x 0.1TΩ = 1MV !!! 


这个电压值是否会让 工程师感到恐怖!


因此,高阻测量时,采用电压激励,测量电流值的方法。传统的万用表,已经无法胜任,需要动用皮安计和高阻计,例如是德科技的 B2985B。在测量0.1TΩ的电阻时,它可以施加最高1000V的电压,而电流测量分辨率是0.01fA!其电阻测量能力可以达到10PΩ级,即1016级别!


3.jpg

2985B 皮安计和高阻计


1637741939676020.png

B2985B 实测100GΩ电阻


对于绝缘体或高阻来说,材料的电阻率往往比电阻值本身更受关注。ASTM D-257是绝缘材料电阻率测试行业标准,标准中对绝缘材料电阻率测试的方法,电极,测量过程有详细规定。


1637741923434616.png


为了实现精确的绝缘材料的体电阻率和表面电阻率的测量,测试治具是必不可少的,例如是德科技的N1424 绝缘电阻率测试夹具,配合N2985B 或N2987B 使用。测试夹具由屏蔽盒、上、下电极,以及压力控制装置构成。


6.jpg

N1424 绝缘电阻率测试夹具


1. 体电阻率和电极等效方法:


被测材料夹在上、下电极之间,在上、下电极施加电压,根据测量的电流、材料的厚度、截面积等参数,获得体电阻率。


7.jpg

8.png

1637741844916581.png

9.png

1637741790764302.png

10.png


2. 表面电阻率和电极等效方法为:


被测材料夹在上、下电极之间,下方的圆形电极的外环和内环之间施加电压,根据测量的内、外环之间的电流、材料的厚度、截面积等参数,获得表面电阻率。


11.png

12.png

13.png

14.png

13.png

15.png


因此,绝缘材料电阻率测量,本质依然是大电阻的测量,通过测量的电阻按照电极的参数计算单位体积或面积的电阻率值。


测量的过程中,由于测量的电流可能极小,由于材料极化作用或干扰的存在,会让读数有些不稳定,这就需要配合相关的软件,最终得到理想的结果。


1637741690423930.png


通过Excel软件,输入对应参数,即可自动获得电阻率测试曲线,操作更简单。


我们特地录制了测试过程的视频,能让您看得更清楚:


17.jpg


来源:是德科技KEYSIGHT



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


如何防止运转过热:克服Wi-Fi前端设计中的热量难题

高效电源设计的实时数字解决方案(第一部分)

如何避免电源设计中的电感饱和

新型SMU克服低电流容性设置的棘手测试挑战

什么是皮带传动一体化起动/发电机或集成式一体化启动/发电电机?

相关资讯
920nm问世+低红曝优选:IR:6技术精准匹配多元红外应用场景

IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。

工业电动化浪潮:充电器设计的效率与尺寸挑战

工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。

高温应用驱动下的集成电路耐热性挑战

技术的迅猛发展持续推动着商业、工业及汽车等领域对耐高温集成电路(IC)的迫切需求。然而,高温环境会显著劣化集成电路的性能、可靠性与使用寿命,形成亟待解决的技术瓶颈。本文旨在系统分析高温对IC的物理影响,深入剖析高结温带来的核心挑战,并探讨针对高功率应用的有效设计应对策略。

SiC市场技术演进的关键突破:共源共栅(Cascode)结构解析

安森美(onsemi)推出的碳化硅共源共栅场效应晶体管(Cascode FET),通过创新架构融合SiC JFET与低压硅MOSFET,成功解决了SiC JFET常开特性的应用瓶颈。该设计兼具SiC材料的高效优势与硅器件的易控特性,在硬开关与软开关场景中展现显著性能提升。本文将深入剖析其结构原理及核心优势。

差分晶振和无源晶振有什么区别

在现代电子系统的设计中,晶振作为提供稳定时钟信号的“心脏”,其性能直接影响着整个系统的可靠性与效率。面对差分晶振与无源晶振(晶体谐振器) 这两类核心时钟源,工程师们往往需要在性能、成本、设计复杂度与抗干扰能力之间寻求微妙的平衡。这两者绝非简单的引脚差异,而代表了截然不同的工作原理与设计哲学: