发布时间:2021-11-25 阅读量:2253 来源: Harwin 发布人: wenwei
【导读】在我们关于电子元件内电流和工作温度之间的联系的第二篇文章中,我们将继续计算用于减额曲线的数据,并对这些数据进行一些实际考虑。
如果你错过了上篇,你可能想先看看那篇文章,因为它涵盖了降额曲线的定义、获取数据的测试方法以及两张图中的第一张——温升v电流。
您可能还想阅读我们之前发布的温度范围的秘密,以确保您理解我们所说的工作温度。
图2–降额曲线
要生成第二张图,我们需要对温度进行一些数学计算。取最高工作温度并减去温升读数。这将为您提供每个电流级别的最高环境温度。例如,请参见以下示例数据:
将最高环境温度放在Y轴上,将电流放在X轴上。下面是Kona的例子:
在80A时,4触点Kona超过了150°C的最高工作温度,这就是为什么您看到该图下降到负温度读数的原因。
此图现在显示了任何尺寸接头的温度和电流的安全工作范围。每个曲线下的温度和电流的任何组合都可能是可接受的。例如,如果您的设备内部温度高达90°C,理论上,您可以使用Kona 4触点,每个触点的电流高达52A。在实践中,要考虑增加损坏的安全余量,稍后将带您了解更多。
最大额定电流
完成所有测试后,确定额定电流的标准值。现在,确定连接器或触点最大电流值的公认方法存在差异。
有些将根据30°C温升或45°C温升计算。考虑到预期的最终应用,可以通过查看图表并确定合理的值来确定其他值。Kona属于这一类——每个触点的最大电流为60A,确实会产生健康的温升。但这仍然表明最大环境温度远低于150°C的最大工作温度,远高于-20°C至+50°C的典型环境温度。
在现实世界中
请记住,这些图表是在实验室中,在理想条件下,在稳定的电源等情况下建立的。在实际情况下,最好添加安全余量,以允许额外变化和不可预见的情况发生。
如果有许多变量可能影响最终应用程序的性能,则应认真考虑执行您自己的测试。考虑建立更能代表最终使用方法的原型,或者实验室中的气候测试。
或者,您的设备可能具有额外的冷却功能–散热器、风扇或其他方法–可以从触点中散热,并允许您达到更高的电流值。当您使用这些技术时,建议您再次进行测试。
连接器测量和测试的实验室条件
连续v脉冲电流
出现的一个问题是,我们的降额曲线和额定电流将如何预测连接器是否能够在较短时间内处理较高的电流。简单的回答是他们没有。
请记住,测试是通过让持续稳定的电流通过连接器,并让其随时间加热金属来完成的。这并没有给出它将如何处理5秒或毫秒的更高电流的任何指示。
与任何产品的所有规格一样,在制造商信息之外建立性能标准的唯一方法是自己进行测试,很抱歉!您可以选择在一个小PCB或模块中,或者在整个应用程序中,作为一个隔离部件进行测试。根据所涉及的应用程序和布局,每种方法可能产生不同的结果。
总结:
建立降额曲线是一个相对简单的过程,尽管它确实需要一些时间和良好的设备来确保结果的可靠性。如果您的应用程序处于产品温度范围的上三分之一,或接近当前极限,则可能值得投资于您自己的测试,该测试更针对特定的应用程序,即使制造商提供实验室降额曲线数据。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。
IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。
工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。