发布时间:2021-11-25 阅读量:2144 来源: Harwin 发布人: wenwei
【导读】在我们关于电子元件内电流和工作温度之间的联系的第二篇文章中,我们将继续计算用于减额曲线的数据,并对这些数据进行一些实际考虑。
如果你错过了上篇,你可能想先看看那篇文章,因为它涵盖了降额曲线的定义、获取数据的测试方法以及两张图中的第一张——温升v电流。
您可能还想阅读我们之前发布的温度范围的秘密,以确保您理解我们所说的工作温度。
图2–降额曲线
要生成第二张图,我们需要对温度进行一些数学计算。取最高工作温度并减去温升读数。这将为您提供每个电流级别的最高环境温度。例如,请参见以下示例数据:
将最高环境温度放在Y轴上,将电流放在X轴上。下面是Kona的例子:
在80A时,4触点Kona超过了150°C的最高工作温度,这就是为什么您看到该图下降到负温度读数的原因。
此图现在显示了任何尺寸接头的温度和电流的安全工作范围。每个曲线下的温度和电流的任何组合都可能是可接受的。例如,如果您的设备内部温度高达90°C,理论上,您可以使用Kona 4触点,每个触点的电流高达52A。在实践中,要考虑增加损坏的安全余量,稍后将带您了解更多。
最大额定电流
完成所有测试后,确定额定电流的标准值。现在,确定连接器或触点最大电流值的公认方法存在差异。
有些将根据30°C温升或45°C温升计算。考虑到预期的最终应用,可以通过查看图表并确定合理的值来确定其他值。Kona属于这一类——每个触点的最大电流为60A,确实会产生健康的温升。但这仍然表明最大环境温度远低于150°C的最大工作温度,远高于-20°C至+50°C的典型环境温度。
在现实世界中
请记住,这些图表是在实验室中,在理想条件下,在稳定的电源等情况下建立的。在实际情况下,最好添加安全余量,以允许额外变化和不可预见的情况发生。
如果有许多变量可能影响最终应用程序的性能,则应认真考虑执行您自己的测试。考虑建立更能代表最终使用方法的原型,或者实验室中的气候测试。
或者,您的设备可能具有额外的冷却功能–散热器、风扇或其他方法–可以从触点中散热,并允许您达到更高的电流值。当您使用这些技术时,建议您再次进行测试。
连接器测量和测试的实验室条件
连续v脉冲电流
出现的一个问题是,我们的降额曲线和额定电流将如何预测连接器是否能够在较短时间内处理较高的电流。简单的回答是他们没有。
请记住,测试是通过让持续稳定的电流通过连接器,并让其随时间加热金属来完成的。这并没有给出它将如何处理5秒或毫秒的更高电流的任何指示。
与任何产品的所有规格一样,在制造商信息之外建立性能标准的唯一方法是自己进行测试,很抱歉!您可以选择在一个小PCB或模块中,或者在整个应用程序中,作为一个隔离部件进行测试。根据所涉及的应用程序和布局,每种方法可能产生不同的结果。
总结:
建立降额曲线是一个相对简单的过程,尽管它确实需要一些时间和良好的设备来确保结果的可靠性。如果您的应用程序处于产品温度范围的上三分之一,或接近当前极限,则可能值得投资于您自己的测试,该测试更针对特定的应用程序,即使制造商提供实验室降额曲线数据。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
在模拟电子系统中,可变增益放大器是实现动态信号调理的核心模块。本实验聚焦运算放大器拓展应用,通过晶体管压控切换与电位计阻值调节两种方法构建可变增益放大器。采用ADALM2000模块搭建实验平台,结合OP97运放、2N3904晶体管及可调电阻网络,探究增益动态控制机制。通过方波驱动晶体管实现增益阶跃切换,以及电位计连续调节反相/同相放大倍数,验证压控与手动增益调节的电路特性,为音频压缩、通信调制等应用提供硬件设计基础。
随着数字计算器件(如FPGA、处理器及ASIC)的工艺技术不断微缩至纳米级别,其内核电压持续降低至1V以下,电源容差窗口已缩减至±3%甚至更小。这一趋势对电源的精准性提出了严苛挑战:传统开关稳压器的输出误差可能导致内核电压偏离安全范围,进而引发器件故障或永久性损坏。本文聚焦高精度窗口电压监控器的核心作用,通过量化分析其阈值精度对电源窗口的影响,提出优化策略,确保低电压器件在严格容差范围内稳定运行,同时最大化电源输出性能。
晶振是电子设备中的关键元件,为各类电子产品提供稳定的时钟信号。了解晶振的主要参数能够更好地了解晶振性能以及如何根据参数选择合适的晶振。
随着四足机器人(机器狗)在高动态运动与复杂环境作业中的突破性进展,其核心控制系统对时钟信号精度的需求已迈向“微秒级”挑战。以宇树科技Unitree B2-W为代表的轮足式机器狗,通过空翻、抗冲击越野等高难度动作验证了机器人技术的飞跃,而支撑其精准运动控制、多传感器协同及稳定通信的核心,正是晶振提供的精密时钟基准。面对户外温差(-40℃~85℃)、振动干扰及多模块同步需求,YXC针对性推出TCXO温补晶振解决方案——包括通用型YSO510TP(±2.5PPM稳定性)、可编程YSO511PJ(10-250MHz全频段覆盖)及超精密YSO512ET(±0.1PPM工业级精度),配合小至1.6×1.0mm的32.768KHz微型谐振器,为机器狗的全场景应用构建从基础时序到高速通信的完整时钟链,驱动智能机器人突破物理环境限制。
随着PCIe 5.0技术在高性能计算、数据中心及AI应用中的普及,其单通道32 GT/s的超高速率对参考时钟性能提出了前所未有的挑战。PCIe 6.0虽进一步将速率提升至64 GT/s并引入PAM4调制技术,但其底层稳定性仍依赖于高精度时钟信号的同步与纠错能力。在此背景下,YXC推出的HCSL输出差分晶振(如YSO230LR/YSO231LJ系列)以超低相位抖动(0.05ps RMS)、±25ppm全温区频差精度及2.5×2.0mm微型封装,成为PCIe 5.0参考时钟设计的核心解决方案,精准解决高速信号同步、多设备协同及噪声抑制等关键技术瓶颈,助力新一代硬件突破性能边界。