ADALM2000实验:从三角波生成正弦波

发布时间:2021-11-26 阅读量:1704 来源: ADI 发布人: wenwei

【导读】本次实验评估的电路利用SSM2212 NPN匹配晶体管对中包含的差分晶体管对的特性,从一个三角波生成一个近似正弦波。我们知道,差分晶体管对的跨导定义为:


1.png


其中,IO为差分对尾电流,VIN为差分输入电压,VT为热电压,在室温下大约是26 mV。


材料


●     ADALM2000 主动学习模块

●     无焊面包板

●     跳线

●     一个10 kΩ电阻

●     四个4.7 kΩ电阻

●     一个2.2 kΩ电阻

●     两个220 Ω电阻

●     一个390 Ω电阻

●     一个500 Ω电位计

●     一个100 pF电容

●     两个小信号NPN晶体管(SSM2212 NPN匹配对)

●     一个运算放大器(OP27)


说明


在无焊面包板上构建图1所示电路。原理图中未显示OP27放大器的+5 V(引脚7)和-5 V(引脚4)电源连接,但要记住连接它们,否则电路将不工作。


2.png

图1.差分对三角波变正弦波转换器


W1设置如下:


●     幅度(峰峰值)= 3.6 V

●     偏移 = 0 V

●     频率 = 1 kHz

●     三角波


调整500Ω电位计R6,使输出正弦波形实现最佳对称性。使用FFT显示屏并寻找最小偶数阶失真,可能是测试输出正弦波质量的好办法。可能需要调整输入三角波的幅度和直流偏移,看看其能否改善输出的奇数阶谐波。


对于本电路,输出电压近似为:


3.png


其中RL表示输出上的4.7 kΩ负载电阻。发生2分压的原因是我们仅需要一个单端输出,而非差分输出。


所以,输出电压将是输入电压的双曲正切函数。正弦和双曲正切函数的泰勒级数的前几项分别如式3和式4所示。


4.jpg

图2.差分对三角波变正弦波转换器面包板连接


正弦:


5.png


双曲正切:


6.png


比较这两个泰勒级数表明,二者均有一阶线性分量。这意味着,如果我们将一个三角波应用于一个具有双曲正切转换函数的差分对并保持较低幅度(大约2VT),则输出应与正弦波几乎无区别。差分对输入端(Q1的基极)的2.2 kΩ和220 Ω电阻的作用是衰减来自AWG的三角波信号,使电路在输出失真正弦波尽可能低的范围内工作。


硬件设置


将图1所示电路连接到面包板。


程序步骤

配置示波器以捕获所测量的两个信号的多个周期。使用Scopy的波形示例如图3所示。


1637923804752422.jpg

图3.差分对三角波变正弦波转换器的Scopy波形


三角波发生器


为了制作一个独立的正弦波发生器,我们需要将ADALM2000模块波形发生器替换为三角波发生器。 AD654 电压频率转换器IC是三角波发生器的基础。AD654的常规输出是开集数字方波信号。然而,AD654的内部时序电路使用一个斜坡发生器。此内部斜坡波形是在图4中连接到引脚6和7的外部时序电容上以差分形式提供。我们无法在不干扰AD654内部时序的情况下直接使用此三角波信号。我们可以使用 AD8226 仪表放大器来缓冲该差分信号并将其转换为单端信号。通过调整该三角波信号的幅度,我们可以利用它来驱动图1中的三角波变正弦波转换器电路。


材料


●     两个1 kΩ电阻

●     一个47 kΩ电阻

●     一个6.8 kΩ电阻

●     一个220 Ω电阻

●     一个5 kΩ电位计

●     一个0.1 μF电容

●     一个1 μF电容

●     一个红光LED

●     一个电压频率转换器AD654

●     一个仪表放大器AD8226

●     一个小信号NPN晶体管(2N3904)


8.png

图4.电压转频率三角波发生器


9.jpg

图5.电压转频率三角波发生器面包板连接 


将AD8226的三角波输出连接到三角波变正弦波转换器的输入时,用5 kΩ电位计代替2.2 kΩ固定电阻R1以调整信号幅度,实现最优正弦波形。


硬件设置


将图4所示电路连接到面包板。


程序步骤


使用ADALM2000,输出如图6所示。我们可以调整仪表放大器的增益电阻(R16),使电路输出在仪表放大器电源的范围内。


在图6所示的Scopy波形中,R16为168 kΩ。


1637923631310893.jpg

图6.电压转频率三角波发生器Scopy波形 


问题:


●     对于图1中的电路,说明R6电位计设置为最小/最大电阻值时如何影响输出信号。


您可以在学子专区博客上找到问题答案:ez.analog.com/studentzone。



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


降额曲线和最大电流(下)

降额曲线和最大电流(上)

低成本MCU助力电池组系统实现强大功能

可将门级驱动电路和6个功率MOSFET合二为一的解决方案

大功率二极管晶闸管知识连载——保护

相关资讯
恶劣工业环境中无线通信标准的性能对比与适用性评估

随着工业4.0的推进,无线传感器在智能制造中的需求激增,其核心挑战在于如何在复杂射频环境中实现低功耗、高可靠性与安全性。本文聚焦低功耗蓝牙®(BLE)、SmartMesh(基于IEEE 802.15.4e的6LoWPAN)及Thread/Zigbee(基于IEEE 802.15.4的6LoWPAN)三大无线标准,从功耗、可靠性、安全性和总拥有成本等维度展开系统性评估。研究表明,SmartMesh凭借时间同步信道跳频(TSCH)技术,在恶劣工业场景中展现出99.999996%的超高可靠性及极低能耗;而BLE则在大数据量传输场景中表现卓越。此外,融合边缘人工智能(AI)的新型传感器设计进一步优化了能效,为工业无线传感提供了创新解决方案。

智能家居电源管理新突破:纳米功耗技术助力超长电池寿命

随着智能家居技术的快速发展,家庭自动化系统正以前所未有的方式提升生活便利性。然而,分布式传感器的无线部署对电池供电提出了严峻挑战——如何在有限电池容量下实现长久续航?传统电源方案因效率不足、静态电流过高而难以满足需求。如今,纳米功耗(nanopower)技术的创新为这一难题提供了突破口。通过采用ADI公司新一代MAX77837降压-升压转换器和MAX18000升压转换器,智能家居传感器可将单节碱性电池或锂离子电池的低电压(低至0.5 V)高效转换为稳定3.3 V或5 V系统电压,同时将静态电流控制在纳安级。本文结合具体电路设计与仿真工具,揭示如何通过超低功耗电源管理延长设备寿命,推动智能家居向更小、更可靠、更低成本的方向迈进。

基于晶体管与电位计的可变增益放大器设计与实现

在模拟电子系统中,可变增益放大器是实现动态信号调理的核心模块。本实验聚焦运算放大器拓展应用,通过晶体管压控切换与电位计阻值调节两种方法构建可变增益放大器。采用ADALM2000模块搭建实验平台,结合OP97运放、2N3904晶体管及可调电阻网络,探究增益动态控制机制。通过方波驱动晶体管实现增益阶跃切换,以及电位计连续调节反相/同相放大倍数,验证压控与手动增益调节的电路特性,为音频压缩、通信调制等应用提供硬件设计基础。

高精度窗口电压监控器:提升低电压数字器件电源性能的关键

随着数字计算器件(如FPGA、处理器及ASIC)的工艺技术不断微缩至纳米级别,其内核电压持续降低至1V以下,电源容差窗口已缩减至±3%甚至更小。这一趋势对电源的精准性提出了严苛挑战:传统开关稳压器的输出误差可能导致内核电压偏离安全范围,进而引发器件故障或永久性损坏。本文聚焦高精度窗口电压监控器的核心作用,通过量化分析其阈值精度对电源窗口的影响,提出优化策略,确保低电压器件在严格容差范围内稳定运行,同时最大化电源输出性能。

晶振核心参数全解析:从无源到有源,精准匹配电子设计需求

晶振是电子设备中的关键元件,为各类电子产品提供稳定的时钟信号。了解晶振的主要参数能够更好地了解晶振性能以及如何根据参数选择合适的晶振。