发布时间:2021-11-26 阅读量:1282 来源: ADI 发布人: wenwei
【导读】本实验通过组合 之前的学子专区文章 中所探讨的电路模块,对于利用几个分立式器件构建完整的高开环增益放大器将很有帮助。
材料
● ADALM2000 主动学习模块
● 无焊面包板
● 跳线
● 一个8.2 kΩ电阻(将1.5 kΩ与6.8 kΩ电阻串联可得到近似的等效电阻)
● 一个47 kΩ电阻
● 一个100 kΩ电阻
● 两个470 kΩ电阻
● 一个10 kΩ电阻
● 一个1 kΩ电阻
● 两个22μF电容
● 一个1 μF电容
● 一个47 nF电容
● 一个小信号PNP晶体管(2N3906)
● 三个小信号NPN晶体管(2N3904和SSM2212)
描述
在无焊面包板上构建图1所示的放大器电路。
图1.高增益放大器。
硬件设置
如图1中的蓝色方框所示,将电路连接至ADALM2000 I/O连接器。对于未使用的示波器负输入,在不使用时最好将其接地。对Q1和Q2晶体管应使用SSM2212 NPN匹配对。
程序步骤
配置波形发生器,以生成1 kHz正弦波,峰峰值幅度为400 mV,偏移为0。使用示波器通道1观察W1处的输入,使用示波器通道2观察RL处的放大器输出,记录输入-输出幅度和相位关系。
配置示波器,以捕获多个周期的输入和输出信号,以500 mV/division的比例缩放通道。
示波器图示例如图3所示。
图2.高增益放大器面包板电路。
图3.高增益放大器波形。
单位增益放大器
通过组合之前的文章中所探讨的电路模块,我们可以构建完整的单位增益缓冲放大器。为差分级增加电流镜负载是对这款简单放大器的重要改进。
材料
● ADALM2000 主动学习模块
● 无焊面包板
● 跳线
● 一个15 kΩ电阻(可以用10 kΩ电阻与4.7 kΩ电阻串联代替)
● 两个小信号PNP晶体管(可以使用2N3906或SSM2220 PNP匹配对)
● 六个小信号NPN晶体管(2N3904,对Q1和Q2使用SSM2212 NPN匹配对;如果没有足够多的2N3904器件,可以用TIP31C代替Q5)
说明
在无焊面包板上构建图4所示电路。如蓝色方框所示,将电路连接至ADALM2000 I/O连接器。对于未使用的示波器负输入,在不使用时最好将其接地。
图4.单位增益放大器。
硬件设置
电路的面包板连接如图5所示。
图5.电压转频率三角波发生器面包板连接
程序步骤
配置AWG1,以生成1 kHz正弦波,峰峰值幅度为2 V,偏移为0。使用示波器通道1观察W1处的输入,使用示波器通道2观察放大器输出,记录输入-输出幅度和相位关系。
配置示波器,以捕获多个周期的输入和输出信号,以1 V/division的比例缩放通道。
示波器图示例如图6所示。
图6.具有单位增益波形的放大器。
问题:
● 对于图1所示的电路,从输入源W1到RL输出的增益是多少?由哪些组件设置此增益?
● 更改补偿电容C3的值。提高和降低C3的值会如何影响频率响应?
您可以在 学子专区 博客上找到问题答案。
附录:PCB板上的更高级版本
本次实验使用的PCB板设计文件和其他相关扩展文件可在ADI GitHub教育工具库下的 实验板设计文件 中找到。图7显示PCB原理图,图8显示该板的照片。
图7.运算放大器PCB原理图。
图8.运算放大器PC板。
该PCB使用标准的8引脚DIP单通道运算放大器封装,可插入无焊面包板中。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。
IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。
工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。