发布时间:2021-11-26 阅读量:1451 来源: ADI 发布人: wenwei
【导读】输出级的作用是提供功率增益。它应该具有高输入阻抗和低输出阻抗。该级的一个显而易见的选择就是发射极跟随器。但是,为了同时提供拉电流和灌电流能力,需要两个互补跟随器:一个NPN型用于拉电流,一个PNP型用于灌电流。结果就是所谓推挽配置,图1显示了一个简单例子。R1和R2用于检测Q1和Q2的集电极电流,以及在输出过载的情况下限制这些电流。
本次实验旨在研究简单推挽放大器的输出级(B类和AB类)。
背景信息
输出级的作用是提供功率增益。它应该具有高输入阻抗和低输出阻抗。该级的一个显而易见的选择就是发射极跟随器。但是,为了同时提供拉电流和灌电流能力,需要两个互补跟随器:一个NPN型用于拉电流,一个PNP型用于灌电流。结果就是所谓推挽配置,图1显示了一个简单例子。R1和R2用于检测Q1和Q2的集电极电流,以及在输出过载的情况下限制这些电流。
材料
● ADALM2000 主动学习模块
● 无焊面包板
● 跳线
● 两个100 Ω电阻
● 一个2.2 kΩ电阻
● 两个10 kΩ电阻
● 两个小信号NPN晶体管(最好是具有匹配VBE的SSM2212)
● 两个小信号PNP晶体管(最好是具有匹配VBE的SSM2220)
说明
开始之前,请确保关闭ADALM2000上的电源。电路和实验室硬件的连接如图1所示。示波器输入1应连接到Q1和Q2基极的接合处。示波器输入2应连接到Q1和Q2发射极的接合处。
图1.推挽输出级
硬件设置
示波器的通道1应连接为显示第一发生器的输出,两个通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图2所示。
程序步骤
波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6 V,偏移为0。将正电源(Vp)设置为+5 V,将负电源(Vn)设置为-5 V。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。图3为Scopy波形图示例。
图2.推挽输出级面包板电路
图3.推挽输出级波形
接下来施加电源并调整波形发生器,使W1为100 Hz三角波,其偏移为0 V,峰峰值幅度为3 V。在x-y模式下使用示波器观察电路的电压传输曲线。图4为Scopy XY波形图示例。
图4.电压传输曲线
减少输出失真
在图1所示的基本推挽级中,过零处的大量失真是死区——此时NPN和PNP发射极跟随器均关闭——造成的结果。如果用两个VBE压降预偏置BJT,则波形在过零处的死区大幅减少,如图5所示。这里,预偏置功能由二极管连接的NPN Q1和PNP Q3提供。电阻R1和R2提供偏置电流,并设置流入输出器件Q2和Q4中的空闲电流。
说明
在电源关闭的情况下,组装图5所示电路,引线应尽可能短且整洁。NPN晶体管Q1和Q2以及PNP晶体管Q3和Q4应从VBE匹配最佳的可用器件中选择。在同一封装中制造的晶体管,例如SSM2212或CA3046,往往比单个器件匹配得更好。
图5.具有过零失真消除功能的推挽输出级
考察图5中由Q1、Q2、Q3和Q4的基极发射极电压形成的环路,我们知道环路周围的压降之和必须为零。因此,如果Q1与Q2相同,并且Q3与Q4相同,则仅当Q1中的电流与Q2中的电流相同,并且Q3中的电流与Q4中的电流相同时,环路周围的电压才会为零。当输出为0 V——也就是说RL中没有电流,输入也必然为0 V。
硬件设置
示波器的通道1应连接第一路信号发生器的输出,两个通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图6所示。
图6.具有过零失真消除功能的推挽输出级面包板电路
程序步骤
波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6.0 V,偏移为0。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。
图7.具有过零失真消除功能的推挽输出级波形
另一种配置
记住由Q1、Q2、Q3和Q4的基极发射极电压形成的环路,我们还知道环路周围压降的顺序可以互换。因此,如果互换NPN Q1和PNP Q3的VBE值,我们将得到图8所示的配置。有些人可能意识到,Q3和Q2的组合就是我们在4月份文章"ADALM2000实验:发射极追随器(BJT)"中讨论的低失调跟随器。电路利用PNP发射极跟随器的VBE向上偏移来部分抵消NPN发射极跟随器的VBE向下偏移。晶体管Q1和Q4分别与Q3和Q2互补。
图8.发射极跟随器过零失真消除
硬件设置
示波器的通道1应连接第一路信号发生器的输出,两个示波器通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图9所示。
程序步骤
波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6 V,偏移为0。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。
图9.发射极跟随器过零失真消除面包板电路
图10.发射极跟随器过零失真消除波形
问题:
对于图5中的电路(具有过零失真消除功能的推挽输出级)和图8中的电路(发射极跟随器过零失真消除),仿真并绘制输入/输出传输曲线。这些电路与图1中的电路相比如何?
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。
在当今高速成像应用中,如机器视觉、自主导航、增强/虚拟现实(AR/VR/MR)和条码扫描,传统的卷帘快门图像传感器往往力不从心,会因运动模糊或空间失真严重影响图像质量。为克服这些挑战并精准“冻结”快速运动的物体,具备全局快门特性的先进CMOS图像传感器成为关键选择。安森美深知工程师在为高速应用筛选最优全局快门传感器时需权衡大量参数(如分辨率、光学格式、帧率、功耗、动态范围、全局快门效率GSE及信噪比SNR等)以及高级功能(如同步触发、嵌入式自动曝光、ROI选择),因此开发了创新的Hyperlux SG系列产品。
安森美SiC Combo JFET技术通过创新性集成常开型SiC JFET与低压Si MOSFET,构建出高性能共源共栅(cascode)结构,攻克了SiC器件常开特性的应用瓶颈。该方案兼具SiC材料的高压处理能力、超低导通电阻(RDS(on))与卓越热性能,以及Si MOSFET的易控常关特性,为大电流应用(如固态断路器、高功率开关系统)和多器件并联场景提供突破性的功率密度与效率解决方案。
IR:6红外芯片通过实质性的技术创新,显著提升了在面部识别、智能传感器和节能系统等应用中的关键性能(亮度、效率和图像质量)。它在人眼不可见的红外领域展现出卓越表现,特别是在安防领域以更高亮度、更低功耗和更优画质设定了新的距离覆盖和可靠性标准。
工业设备加速迈向电动化,对稳健、高效、适应性强的电池充电器需求激增。无论是手持工具还是重型机械,充电器必须应对严苛环境和全球通用电压输入(120-480 Vac),并优先满足小型化、轻量化及被动散热的设计要求。在这一关键任务中,功率因数校正(PFC)级的拓扑选择至关重要,它直接影响着系统效率、尺寸和成本。本文将剖析现代工业充电设计的核心挑战,重点对比传统升压 PFC 与日益流行的图腾柱 PFC 拓扑方案,并探讨碳化硅(SiC)MOSFET 如何颠覆性地赋能高效率解决方案,为工程师提供清晰的设计指导。