发布时间:2021-12-21 阅读量:931 来源: 我爱方案网 作者: 我爱方案网整理
即使同意自行学习是前进的方向,如何执行呢?AI研究者投入了大量的精力,研究机器学习,有广泛的知识可供借鉴。
在许多机器学习任务中,使用一种称为梯度下降的优化算法。这是机器实际学习的方式。理解这一算法的基础很容易。它是一个迭代算法,逐步逼近答案。它从做出一个预测开始,然后得到一个离真相有多远的反馈,然后做出一个略微改善的预测。这一序列不断继续,直到满意于预测和真相的差距。换句话说,学习是一个主动的一步一步的过程,其中算法在每一步重新考虑它的假定,并逐渐改进。
我无法替别人思考,也无法不借助于别人而思考,别人也无法替我思考。即使人们的想法是迷信,或者很幼稚,只有当他们在行动中重新思考他们的假定时,他们才能做出改变。在这一过程中,必须生产自己的想法,并据此行动,而不是消费其他人的想法。
如所见,梯度下降可能帮助理解如何执行自行学习。也可以从测试阶段得到一些经验。
每个从事ML的人都牢记的一点是训练算法时使用一个数据集(称为训练数据),然后使用另一个数据集测试(称为测试数据),以确保算法并不是在记忆(过拟合),确实在学习。当然,训练数据和测试数据必须来自同一分布。不能教授数学,然后期望算法能够很好地回答历史问题。
例如,如果创建猫分类器,通过展示加菲猫、Hello Kitty、跳跳虎等图片训练算法,然后使用不同种类的猫:菲力猫、Cosmo猫、费加罗……如果算法能够说菲力猫是猫,那么它学习了什么是“猫性”。如果算法说加菲猫是猫,那它也许学习了“猫性”,但也可能只是记住了加菲猫是猫这一事实而已。因此,这一领域的每个从业者都赞同不应该使用训练数据来测试。你觉得人类学习也适用这一原则吗?
教育小孩的时候,常常使用特定的一组问题训练和测试。然而,生活中的问题没有预定义的严格结构。它们不断演化。只有内化概念而不是死记硬背才能应对生活中的问题。因此应该用开放的问题挑战学生,让他们面对不确定性,让他们在领域中自己猜测和探索。
例子:如何教授导数?
来举一个具体的例子,比较下基于规则的方法和自行学习的方法在教授导数上有什么不一样。如果你愿意,可以跳过这一部分。这里的目标是展示如何激励自行学习导数,而不是教你导数是什么。
传统上,导数的教学是通过介绍求导公式以及展示几种常见函数的导数。接着,学生通过求解一些问题记忆公式。这和基于规则的AI一样,硬编码算法需要遵循的规则。

下面让看下另一种方法,也就是自行学习的方法。和在机器学习中做的一样,这里的目标是创建一个可以激励自行学习的环境。不会灌输任何东西,学生会自己学习。
导数的本质是瞬间变化,但改变是在整个时间段发生的,瞬间仅仅是其中的一个时刻。为了捕捉导数的思想,人们应该自己察觉其中的矛盾。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。