使用低压驱动器来提高RF功率放大器的效率

发布时间:2021-12-21 阅读量:1324 来源: 我爱方案网 作者: 我爱方案网整理

已经构建了一个高效的两级GaN RF PA MMIC,它采用一个低压工作的GaN晶体管作为驱动器。这可以通过降低驱动器的功耗和消除其与末级之间级间匹配的需要,来提高整体PA的平均效率。


尽管负载调制引起的输出功率变化很大,但MMIC的末级采用准负载不敏感(QLI)的E类负载网络来终止,从而可以实现高效率。该负载网络采用标准的RF封装,并利用键合线和封装引线电容来实现。


负载牵引测量结果表明,尽管负载调制多种多样——例如输出功率可以有8dB变化——但PA的总功率效率仍然大于70%。由于能始终保持这种高效率,因此该MMIC对有赖于负载调制的PA架构(例如Doherty和异相方法)非常有用。

我们使用此MMIC创建了一个演示PCB。该系统的线性增益约为27dB,在2.14GHz、输出功率为35.4dBm时,最大效率为76%。驱动器和末级的电源电压分别为5.5V和25V。我们在我们的演示装置中使用了带矢量切换广义记忆多项式数字预失真(VS-GMP DPD)算法的WCDMA信号,并在29.4dBm的平均输出功率下实现了-52.4dBc的相邻信道泄漏比。


电路架构

传统和新型低压驱动器RF PA阵容的原理图,分别显示在图1的左侧和右侧。


 使用低压驱动器来提高RF功率放大器的效率

图1:左侧是传统的高压驱动器RF PA,右侧是低压驱动器RF PA。


传统方法对驱动器和末级使用相同的电源电压,因此整个PA需要在其驱动器和末级之间添加一个匹配网络。在驱动器上使用低电源电压,可以充分降低其输出阻抗,而使整个PA不需要这样的匹配网络,从而可降低功率损耗。低驱动器电源电压还可降低驱动器的功耗,从而提高整体效率。去掉级间匹配网络还可降低MMIC的尺寸,从而降低成本。


图2比较了仿真条件下传统高压和新型低压驱动器RF PA拓扑的整体效率。虽然仿真得到的漏极效率(DE)对于高压和低压情况几乎相同,但功率附加效率(PAE)却存在显著的差异。


 使用低压驱动器来提高RF功率放大器的效率


 使用低压驱动器来提高RF功率放大器的效率

图2:当PA工作在2.14 GHz时,两种驱动器架构的漏极效率(上图)和功率附加效率(下图)的仿真比较。


两级GaN HEMT MMIC设计


此MMIC采用Fraunhofer IAF的0.25µm GaN HEMT技术在多项目晶圆上构建为两级放大器。驱动级和末级的总栅极宽度分别为0.488mm和2.4mm。末级晶体管和驱动器晶体管以及交流耦合电容和栅极偏置电阻均集成在一块裸片上,如图3所示。


封装内准负载不敏感的E类负载网络


尽管负载调制引起的输出功率变化很大,但MMIC的末级仍采用QLI E类负载网络终止,以便确保高效率。


MMIC及其QLI E类负载网络采用SOT1112A标准埃赋隆(Ampleon)空腔陶瓷封装,并使用键合线和封装引线电容产生两个关键的电抗元件:4.9nH的L1和1.5pF的C1。


 使用低压驱动器来提高RF功率放大器的效率

图3:已组装MMIC及其负载网络的原理图。


图4显示了已封装MMIC在负载牵引测量下的效率,表明已封装MMIC可以在大负载变化下保持其高效率。


 使用低压驱动器来提高RF功率放大器的效率

图4:低压驱动器MMIC在2.14GHz脉冲负载牵引测量期间的漏极效率和功率附加效率。


构建演示板并使用已调信号对其进行测量


为了进一步证明低压驱动器方法的价值,我们设计了一个PCB来安装此MMIC,并调整其输出负载,以匹配此MMIC在上述负载牵引测量下单独实现其最大效率时的阻抗。


PCB板采用Rogers RO4350B作为基板来制备。图5中显示了该PCB板及其偏置和匹配元器件。


 使用低压驱动器来提高RF功率放大器的效率

图5:PCB上的元器件及其值,以及已安装PA小插图。


图6显示了已安装PA采用2.14GHz连续波信号测得的漏极效率、功率附加效率和增益。峰值PAE为76%。驱动器功耗非常低,以至于在低输出功率和高输出功率水平下,漏极和功率附加效率之间的差异可以忽略不计。在2.14GHz时测得的小信号增益约为27dB。


 使用低压驱动器来提高RF功率放大器的效率


推荐阅读:

使用HFA3787设计零中频接收机的设计方案

使用AI方面的知识来改进人类智能

人工神经网络借鉴了大脑吗?如何激励自行学习?

连接器模块测试简述

实现基于COTS的新型连接器

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。