探讨通过ADC实现功能安全的潜力

发布时间:2021-12-22 阅读量:1444 来源: 我爱方案网 作者: 我爱方案网整理

传统的功能安全解决方案与更佳的方式


在图中,我们看到的例子是一个多年以前的功能安全系统,我们将它与更现代的解决方案进行比较。其核心是数据采集ADC,它负责转换模拟输入并将数据传输到微控制器。然而,要实现这一解决方案,需要采用许多外部元件,重复执行SPI事务,甚至需要一个冗余ADC,结果极大地增加了物料成本、PCB面积、处理开销和成本。同时还会给系统设计人员带来额外的负担,比如,增加开发时间,降低可靠性等。


有一种单IC解决方案,只需极少的外部元件即可运行功能安全特性。


探讨通过ADC实现功能安全的潜力

从多组件功能安全系统到单芯片ADI解决方案的集成


具有功能安全要求的示例系统


在包含ADC的数据采集系统中,可能发生多种故障,根据具体的应用,       这些故障可能会增加人或机器的健康风险。系统设计师必须区分可接受的风险和不可接受的风险。


探讨通过ADC实现功能安全的潜力

识别压力传感器系统中的潜在故障源。


例如,在气室压力测量和调节系统中,如果罐内压力不能大幅偏离外部压力,则可将使用容差为5%的传感器的做法视为可接受的风险。然而,如果微控制器接收到错误的ADC数据,结果可能导致致命的事故,腔室中的压力可能导致内爆或外爆,这两种情况都有可能导致附近的人受伤或死亡。这种风险水平是不可接受的。因此,必须实施一些功能安全措施,确保控制器接收的信息的完整性。


可能导致这类错误的一些故障源为


电源:电源电压低,低压差(LDO)调节器的输出电压低。

模拟前端(AFE):传感器受损,或放大器驱动到ADC的电压不正确。

数字逻辑:数字域中发生可能影响转换结果的误码。例如,工厂增益或偏移调整系数。

SPI传输:由于传输线环境嘈杂,转换数据的传输和命令的接收中存在误码。

环境:超出IC的额定环境温度。


AD7768-1是ADI公司功能安全产品组合中的Σ-Δ ADC之一,具有广泛的诊断特性,能赋予用户误码检测和诊断以及其他能力。突出显示了典型压力检测系统中的部分可能故障源。


用ADC诊断系统错误


借助ADI公司的ADC功能安全产品组合,用户可以用ADC帮助诊断和/或减少系统错误。这种系统误差测量能力对于保持精确测量极为重要,并且在具有功能安全要求的系统中,这种准确性甚至更加重要。


从参考输入获取的正负满量程电压用于测量系统的增益误差。通过零电平内部短路测量失调误差。然后,用户可以使用ADC的增益和失调调整寄存器来调整系统的失调和增益误差性能。



推荐阅读:

长度在电源测量中的作用—示波器测试开关电源

开关电源测试中设备能保持额定输出电压吗?

测试开关电源负载电流大幅增加时会怎样?

开关电源如何应对输出端的完全短路?

示波器测试开关电源

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。