立体声平衡控制器电路图分析

发布时间:2021-12-22 阅读量:2112 来源: 我爱方案网 作者: 我爱方案网整理

单联电位器构成的立体声平衡控制器电路


图4-53所示是常用的X型单联电位器构成的立体声平衡控制器,2RP12构成立体声平衡控制器电路,它接在左、右声道放大器输出端之间,为低放电路(音频放大系统中的功率放大器)的输入端。


立体声工作状态下,左、右声道电路是分开的,但2RP12接在左、右声道前置放大器输出端,由于2RP12动片接地,故对隔离度的影响小。


当2RP12动片从中心点向上滑动时,2R33送来的左声道信号经2RP12的上部分与2RP7并联的电阻到地,2RP12值减小,该信号衰减量增大,送到左声道低放电路中的信号减小,其输出随之减小;而2RP12动片至下端的阻值增大,对右声道信号衰减量减小,右声道低放电路的输出增大。

  

立体声平衡控制器电路图分析


由此可见,通过调整2RP12可以改变左、右声道的输出,便可以调整左、右声道的平衡,使它们的有效增益大小相等。


带抽头电位器的立体声平衡控制器电路


图4-54所示是带抽头电位器的立体声平衡控制器,RP702是平衡控制电位器,它的中心阻值处有一个抽头,且抽头接地。


RP702动片在中心点时,RP702对左、右声道信号衰减量相等。


当RP702动片从中心抽头向上滑动时,RP702对右声道信号衰减量不变,因为RP702中心抽头接地,此时左声道信号衰减量增大,左声道低放电路输出减小。

  

立体声平衡控制器电路图分析


当RP702动片从中心抽头向下滑动时,左声道输出不变,右声道低放电路输出减小。


这一平衡电路与前面一个电路相比的不同之处是:平衡电位器RP702向一个方向调节时只改变一个声道低放电路的输入信号大小,在进行平衡调节时只减小一个声道的声音。


双联同轴电位器构成的立体声平衡控制器电路


图4-55所示是采用双联同轴电位器构成的立体声平衡控制器。RP1-1、RP1-2是双联同轴电位器,用来构成立体声平衡控制器;RP2-1和RP2-2是双联同轴电位器,用来构成双声道音量控制器电路。当RP1-1、RP1-2动片在中心点时,左、右声道信号受到等量衰减。


动片向上滑动时,RP1-1动片与地间阻值增大,RP1-2动片与地间阻值减小,这样右声道信号衰减量增大,右声道低放电路输出减小,左声道低放电路输出增大。


动片向下滑动时,RP1-1动片与地间阻值减小,RP1-2动片与地间阻值增大,结果左声道低放电路输出减小,右声道低放电路输出增大。由上述分析可知,通过调整RP1-1、RP1-2将能实现立体声平衡。


推荐阅读:

基于AD7768-1的终极功能安全解决方案

探讨通过ADC实现功能安全的潜力

长度在电源测量中的作用—示波器测试开关电源

开关电源测试中设备能保持额定输出电压吗?

测试开关电源负载电流大幅增加时会怎样?

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。